• Agustí-Panareda, A., and et al. , 2009: Radiosonde humidity bias correction over the West African region for the special AMMA reanalysis at ECMWF. Quart. J. Roy. Meteor. Soc., 135, 595617, doi:10.1002/qj.396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The data assimilation research testbed: A community data assimilation facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asian THORPEX Regional Committee, 2014: Asian THORPEX implementation plan. WMO, 8 pp. [Available online at www.wmo.int/pages/prog/arep/wwrp/new/documents/asian_implementation_plan.pdf.]

  • Baker, W. D., and et al. , 2014: Lidar-measured wind profiles: The missing link in the global observing system. Bull. Amer. Meteor. Soc., 95, 543564, doi:10.1175/BAMS-D-12-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berre, L., and G. Desroziers, 2010: Filtering of background error variances and correlations by local spatial averaging: A review. Mon. Wea. Rev., 138, 36933720, doi:10.1175/2010MWR3111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boettcher, M., and H. Wernli, 2013: A 10-yr climatology of diabatic Rossby waves in the Northern Hemisphere. Mon. Wea. Rev., 141, 11391154, doi:10.1175/MWR-D-12-00012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonavita, M., L. Isaksen, and E. Hólm, 2012: On the use of EDA background error variances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 138, 15401559, doi:10.1002/qj.1899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and et al. , 2010: The THORPEX Interactive Grand Global Ensemble (TIGGE). Bull. Amer. Meteor. Soc., 91, 10591072, doi:10.1175/2010BAMS2853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braud, I., and et al. , 2014: Multi-scale hydrometeorological observation and modelling for flash-flood understanding. Hydrol. Earth Syst. Sci., 18, 37333761, doi:10.5194/hess-18-3733-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Candille, G., 2009: The multiensemble approach: The NAEFS example. Mon. Wea. Rev., 137, 16551665, doi:10.1175/2008MWR2682.1.

  • Cardinali, C., S. Pezzuli, and E. Andersson, 2004: Influence of matrix diagnostic of a data assimilation system. Quart. J. Roy. Meteor. Soc., 130, 27672786, doi:10.1256/qj.03.205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., J. Berner, and C. Snyder, 2016: Diagnosing model errors from time-averaged tendencies in the Weather Research and Forecasting (WRF) Model. Mon. Wea. Rev., 144, 759779, doi:10.1175/MWR-D-15-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapnik, B., G. Desroziers, F. Rabier, and O. Talagrand, 2006: Diagnosis and tuning of observervational error statistics in a quasi operational data assimilation setting. Quart. J. Roy. Meteor. Soc., 132, 543565, doi:10.1256/qj.04.102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, K.-H., C.-C. Wu, P.-H. Lin, S. D. Aberson, M. Weissmann, F. Harnisch, and T. Nakazawa, 2011: The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 17281743, doi:10.1175/2010MWR3582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, Y.-C., S. Bélair, and J. Mailhot, 2010: Simulation of snow on Arctic sea ice using a coupled snow–ice model. J. Hydrometeor., 11, 199210, doi:10.1175/2009JHM1112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, Y.-C., S. Bélair, and J. Mailhot, 2011: Blowing snow on Arctic sea ice: Results from an improved sea-ice, snow and blowing-snow coupled system. J. Hydrometeor., 12, 678689, doi:10.1175/2011JHM1293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and et al. , 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, doi:10.1175/BAMS-D-11-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, doi:10.1002/qj.2054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S., and et al. , 2013: Driftsondes: Providing in-situ long-duration dropsonde observations over remote regions. Bull. Amer. Meteor. Soc., 94, 16611674, doi:10.1175/BAMS-D-12-00075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, G., and et al. , 2010: Weather research in Europe: A THORPEX European plan, version 3.1. WMO/TD-1531, WWRP/THORPEX 14, 45 pp. [Available online at www.wmo.int/pages/prog/arep/wwrp/new/documents/European_Plan_web.pdf.]

  • Davies, H. C., and M. Didone, 2013: Diagnosis and dynamics of forecast error growth. Mon. Wea. Rev., 141, 24832501, doi:10.1175/MWR-D-12-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davison, M., A. Gurtuna, C. Masse, and B. Mills, 2012: Factors affecting the value of environmental predictions to the energy sector. Environ. Syst. Res., 1, 4, doi:10.1186/2193-2697-1-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deacu, D., A. Zadra, and J. Hanesiak, 2010: Simulating wind channeling over Frobisher Bay and its interaction with downslopewinds during the 7–8 November 2006 wind event. Atmos.–Ocean, 48, 101121, doi:10.3137/AO1109.2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diongue-Niang, A., and et al. , 2008: WWRP/THORPEX African Implementation Plan: Version 1. WMO/TD-1461, WWRP/THORPEX 11, 33 pp. [Available online at www.wmo.int/pages/prog/arep/wwrp/new/documents/thorpex_african_implementation_plan.pdf.]

  • Drobinski, P., and et al. , 2013: Driftsonde observations to evaluate numerical weather prediction of the late 2006 African monsoon. J. Appl. Meteor. Climatol., 52, 974995, doi:10.1175/JAMC-D-11-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobinski, P., and et al. , 2014: HyMeX: A 10-year multidisciplinary program on the Mediterranean water cycle. Bull. Amer. Meteor. Soc., 95, 10631082, doi:10.1175/BAMS-D-12-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducrocq, V., and et al. , 2014: HyMeX-SOP1: The field campaign dedicated to heavy precipitation and flash flooding in the northwestern Mediterranean. Bull. Amer. Meteor. Soc., 95, 10831100, doi:10.1175/BAMS-D-12-00244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Federal Highway Administration, 2014: How do weather events impact roads? Accessed 26 May 2016. [Available online at http://ops.fhwa.dot.gov/weather/q1_roadimpact.htm.]

  • Froude, L. S. R., 2010: TIGGE: Comparison of the prediction of Northern Hemisphere extratropical cyclones by different ensemble prediction systems. Wea. Forecasting, 25, 819836, doi:10.1175/2010WAF2222326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garand, L., O. Pancrati, and S. Heilliette, 2011: Validation of forecast cloud parameters from multi-spectral AIRS radiances from multispectral AIRS radiances. Atmos.–Ocean, 49, 121137, doi:10.1080/07055900.2011.567379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., R. H. Langland, S. Pellerin, and R. Todling, 2010: The THORPEX Observation Impact Intercomparison Experiment. Mon. Wea. Rev., 138, 40094025, doi:10.1175/2010MWR3393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, S. L., and H. Wernli, 2015: Dynamics and predictability of middle latitude weather system interactions and their higher and lower latitude interactions. Seamless Prediction of the Earth System, G. Brunet, S. Jones, and P. Ruti, Eds., WMO-1156, WMO, 7799.

    • Search Google Scholar
    • Export Citation
  • Gray, S. L., C. M. Dunning, J. Methven, G. Masato, and J. M. Chagnon, 2014: Systematic model forecast error in Rossby wave structure. Geophys. Res. Lett., 41, 29792987, doi:10.1002/2014GL059282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., F. Yang, C. Cardinali, and S. J. Majumdar, 2013: Impact of targeted Winter Storm Reconnaissance dropwindsonde data on midlatitude numerical weather predictions. Mon. Wea. Rev., 141, 20582065, doi:10.1175/MWR-D-12-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanesiak, J., and et al. , 2010: Storm Studies in the Arctic (STAR). Bull. Amer. Meteor. Soc., 91, 4768, doi:10.1175/2009BAMS2693.1.

  • Harnisch, F., M. Weissmann, C. Cardinali, and M. Wirth, 2011: Experimental assimilation of DIAL water vapour observations in the ECMWF global model. Quart. J. Roy. Meteor. Soc., 137, 15321546, doi:10.1002/qj.851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and J. M. Dea, 2009: Downstream development associated with the extratropical transition of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 137, 12951319, doi:10.1175/2008MWR2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., D. Anwender, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005). Mon. Wea. Rev., 136, 32053225, doi:10.1175/2008MWR2248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansa, A., and et al. , 2014: MEDEX: A general overview. Nat. Hazards Earth Syst. Sci., 14, 19651984, doi:10.5194/nhess-14-1965-2014.

  • Joly, A., and et al. , 1997: The Fronts and Atlantic Storm-Track Experiment (FASTEX): Scientific objectives and experimental design. Bull. Amer. Meteor. Soc., 78, 19171940, doi:10.1175/1520-0477(1997)078<1917:TFAAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joly, A., and et al. , 1999: Overview of the field phase of the Fronts and Atlantic Storm-Track Experiment (FASTEX) project. Quart. J. Roy. Meteor. Soc., 125, 31313163, doi:10.1002/qj.49712556103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, T., and M. Leutbecher, 2007: Performance of the ECMWF forecasting system in the Arctic during winter. Quart. J. Roy. Meteor. Soc., 133, 13271340, doi:10.1002/qj.99.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karbou, F., F. Rabier, J.-P. Lafore, J.-L. Redelsperger, and O. Bock, 2010: Global 4D-Var assimilation and forecast experiments using land surface emissivities from AMSU-A and AMSU-B observations. Part II: Impact of adding surface channels on the African monsoon during AMMA. Wea. Forecasting, 25, 2036, doi:10.1175/2009WAF2222244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. H., S. C. Jones, J. L. Evans, and P. A. Harr, 2011: Characteristics of the TIGGE multimodel ensemble prediction system in representing forecast variability associated with extratropical transition. Geophys. Res. Lett., 38, L12802, doi:10.1029/2011GL047275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. H., S. C. Jones, and P. A. Harr, 2014: An eddy kinetic energy view of physical and dynamical processes in distinct forecast scenarios for the extratropical transition of two tropical cyclones. Mon. Wea. Rev., 142, 27512771, doi:10.1175/MWR-D-13-00219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocke, D., and M. J. Rodwell, 2014: A comparison of two numerical weather prediction methods for diagnosing fast-physics errors in climate models. Quart. J. Roy. Meteor. Soc., 140, 517524, doi:10.1002/qj.2172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristjánsson, J. E., and et al. , 2011: The Norwegian IPY–THORPEX: Polar lows and Arctic fronts during the 2008 Andøya campaign. Bull. Amer. Meteor. Soc., 92, 14431466, doi:10.1175/2011BAMS2901.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhl, D. D., T. E. Rosmond, C. H. Bishop, J. McLay, and N. L. Baker, 2013: Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Wea. Rev., 141, 27402758, doi:10.1175/MWR-D-12-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S. T. K., S. C. Jones, M. Leutbecher, M. S. Peng, and C. A. Reynolds, 2012: Sensitivity, structure, and dynamics of singular vectors associated with Hurricane Helene (2006). J. Atmos. Sci., 69, 675694, doi:10.1175/JAS-D-11-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and N. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A, 189201, doi:10.1111/j.1600-0870.2004.00056.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and et al. , 1999: The North Pacific Experiment (NORPEX-98): Targeted observations for improved North American weather forecasts. Bull. Amer. Meteor. Soc., 80, 13631384, doi:10.1175/1520-0477(1999)080<1363:TNPENT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazo, J. K., 2012: One economist’s entreaty for increased research on weather risk communication. Wea. Climate Soc., 4, 233235, doi:10.1175/WCAS-D-12-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazo, J. K., M. Lawson, P. H. Larsen, and D. M. Waldman, 2011: U.S. economic sensitivity to weather variability. Bull. Amer. Meteor. Soc., 92, 709720, doi:10.1175/2011BAMS2928.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: Comparison of Hybrid-4DEnVar and Hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212229, doi:10.1175/MWR-D-14-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., 2016: A review of targeted observations. Bull. Amer. Meteor. Soc., 97, 22872303, doi:10.1175/BAMS-D-14-00259.1.

  • Majumdar, S. J., and et al. , 2011: Targeted observations for improving numerical weather prediction: An overview. WWRP/THORPEX 15, 37 pp. [Available online at www.wmo.int/pages/prog/arep/wwrp/new/documents/THORPEX_No_15.pdf.]

  • Martínez-Alvarado, O., L. H. Baker, S. L. Gray, J. Methven, and R. S. Plant, 2014: Distinguishing the cold conveyor belt and sting jet airstreams in an intense extratropical cyclone. Mon. Wea. Rev., 142, 25712595, doi:10.1175/MWR-D-13-00348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsutani, M., and et al. , 2007: Progress in Joint OSSEs: A new nature run and international collboration. 18th Conf. on Numerical Weather Prediction, Salt Lake City, UT, Amer. Meteor. Soc., 12B.5. [Available online at http://ams.confex.com/ams/pdfpapers/124080.pdf.]

  • Mills, B., and et al. , Eds., 2008: SERA North: Economics of Weather, Climate, and Climate Change. Meeting summary, Waterloo, ON, Canada, Adaptation and Impacts Research Division, Environment Canada, 55 pp.

  • Moncrieff, M.W., D. E. Waliser, M. J. Miller, M. A. Shapiro, G. R. Asrar, J. Caughey, 2012: Multiscale convective organization and the YOTC virtual field campaign. Bull. Amer. Meteor. Soc., 93, 11711187, doi:10.1175/BAMS-D-11-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., G. Brunet, and J. Caughey, 2007: Improvement of Weather Forecasts in polar regions. WMO Bull., 56(4), 250256.

  • Powers, J. G., K. W. Manning, D. H. Bromwich, J. J. Cassano, and A. M. Cayette, 2012: A decade of Antarctic science support through AMPS. Bull. Amer. Meteor. Soc., 93, 16991712, doi:10.1175/BAMS-D-11-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., and et al. , 2008: An update on THORPEX-related research in data assimilation and observing strategies. Nonlinear Processes Geophys., 15, 8194, doi:10.5194/npg-15-81-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., and et al. , 2010: The Concordiasi project in Antarctica. Bull. Amer. Meteor. Soc., 91, 6986, doi:10.1175/2009BAMS2764.1.

  • Rabier, F., and et al. , 2013: The Concordiasi Field Experiment over Antarctica: First results from innovative atmospheric measurements. Bull. Amer. Meteor. Soc., 94, ES17ES20, doi:10.1175/BAMS-D-12-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher, 2006: African Monsoon Multidisciplinary Analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc., 87, 17391746, doi:10.1175/BAMS-87-12-1739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., and et al. , 2008: The Greenland Flow Distortion Experiment. Bull. Amer. Meteor. Soc., 89, 13071324, doi:10.1175/2008BAMS2508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and T. N. Palmer, 2007: Using numerical weather prediction to assess climate models. Quart. J. Roy. Meteor. Soc., 133, 129146, doi:10.1002/qj.23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roehrig, R., O. Ndiaye, M. Kamara, E. Afiesimama, A. Diedhiou, A. Diongue-Niang, B. Lamptey, and A. Kamga Foamouhoue, 2008: WWRP/THORPEX African Science Plan: Version 1. WMO/TD-1460, WWRP/THORPEX 10, 37 pp. [Available online at www.wmo.int/pages/prog/arep/wwrp/new/documents/thorpex_african_science_plan.pdf.]

  • Rogers, D. P., and et al. , 2005: THORPEX international research implementation plan. Version 1, WMO/TD-1258, WWRP/THORPEX 4, 104 pp. [Available online at www.wmo.int/pages/prog/arep/wwrp/new/documents/CD_ROM_implementation_plan_v1.pdf.]

  • Ruin, I., and et al. , 2014: Social and hydrological responses to extreme precipitations: An interdisciplinary strategy for postflood investigation. Wea. Climate Soc., 6, 135153, doi:10.1175/WCAS-D-13-00009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and A. J. Thorpe, 2004: THORPEX international science plan. Version 3, WMO/TD-1246, WWRP/THORPEX 2, 55 pp. [Available online at www.wmo.int/pages/prog/arep/wwrp/new/documents/CD_ROM_international_science_plan_v3.pdf.]

  • Shapiro, M. A., and et al. , 2010: An Earth-system prediction initiative for the twenty-first century. Bull. Amer. Meteor. Soc., 91, 13771388, doi:10.1175/2010BAMS2944.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and et al. , 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499, doi:10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinbank, R., and et al. , 2016: The TIGGE project and its achievements. Bull. Amer. Meteor. Soc., 97, 4967, doi:10.1175/BAMS-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., Z. Toth, R. E. Morss, S. J. Majumdar, B. J. Etherton, and C. H. Bishop, 2000: The effect of targeted dropsonde observations during the 1999 Winter Storm Reconnaissance program. Mon. Wea. Rev., 128, 35203537, doi:10.1175/1520-0493(2000)128<3520:TEOTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., Z. Toth, A. V. Zimin, S. J. Majumdar, and A. Persson, 2002: Propagation of the effect of targeted observations: The 2000 Winter Storm Reconnaissance program. Mon. Wea. Rev., 130, 11441165, doi:10.1175/1520-0493(2002)130<1144:POTEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., 1999: Editorial. Quart. J. Roy. Meteor. Soc., 125, 3129, doi:10.1002/qj.49712556102.

  • United Nations, 2013: Global assessment report on disaster risk reduction. Accessed 26 May 2016. [Available online at www.preventionweb.net/english/hyogo/gar/2013/en/home/download.html.]

  • Vaughan, G., and et al. , 2015: Cloud banding and winds in intense European cyclones: Results from the DIAMET Project. Bull. Amer. Meteor. Soc., 96, 249265, doi:10.1175/BAMS-D-13-00238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and M. W. Moncrieff, 2008: Year of Tropical Convection (YOTC): The YOTC Science Plan. WMO/TD-1452, WCRP-130, WWRP/THORPEX-9, 26 pp. [Available online at www.wmo.int/pages/prog/arep/wwrp/new/documents/YOTC_Science_Plan.pdf.]

  • Waliser, D. E., and et al. , 2012: The “year” of tropical convection (May 2008 to April 2010): Climate variability and weather highlights. Bull. Amer. Meteor. Soc., 93, 11891218, doi:10.1175/2011BAMS3095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. S. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, doi:10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weissmann, M., and C. Cardinali, 2007: Impact of airborne Doppler lidar wind observations on ECMWF forecasts. Quart. J. Roy. Meteor. Soc., 133, 107116, doi:10.1002/qj.16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weissmann, M., and et al. , 2011: The influence of assimilating dropsonde data on typhoon track and midlatitude forecasts. Mon. Wea. Rev., 139, 908920, doi:10.1175/2010MWR3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136, 463482, doi:10.1175/2007MWR2018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2007a: Elements for Life. S. Chacowry, Ed., Tudor Rose, 216 pp.

  • WMO, 2007b: Madrid conference statement and action plan. WMO Doc., 9 pp. [Available online at www.preventionweb.net/files/2621_madrid07ActionPlanwebE.pdf.]

  • Wu, C.-C., and et al. , 2009: Intercomparison of targeted observation guidance for tropical cyclones in the northwestern Pacific. Mon. Wea. Rev., 137, 24712492, doi:10.1175/2009MWR2762.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 297 297 43
PDF Downloads 161 161 22

THORPEX Research and the Science of Prediction

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 2 Environment and Climate Change Canada, Dorval, Quebec, Canada
  • | 3 World Weather Research Program, World Meteorological Organization, Geneva, Switzerland
  • | 4 Météo-France/CNRS, CNRM/GAME, Toulouse, France
  • | 5 Met Office, Exeter, United Kingdom
  • | 6 World Weather Research Program, World Meteorological Organization, Geneva, Switzerland
  • | 7 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 8 Meteorological Research Division, Environment and Climate Change Canada, Dorval, Quebec, Canada
  • | 9 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
  • | 10 Physical Sciences Division, Agence nationale de l’aviation civile et de la météorologie, Dakar-Yoff, Senegal
  • | 11 Météo-France/CNRS, CNRM/GAME, Toulouse, France
  • | 12 Département des sciences de la Terre et de l’atmosphère, Université du Québec à Montréal, Montreal, Quebec, Canada
  • | 13 NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 14 Department of Meteorology, Naval Postgraduate School, Monterey, California
  • | 15 Deutsche Wetterdienst, Offenbach, Germany
  • | 16 Marine Meteorology Division, Naval Research Laboratory, Monterey, California
  • | 17 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 18 Faculty of Environment, University of Waterloo, Waterloo, Ontario, and Environment and Climate Change Canada, Dorval, Quebec, Canada
  • | 19 National Center for Atmospheric Research, Boulder, Colorado
  • | 20 World Weather Research Program, World Meteorological Organization, Geneva, Switzerland
  • | 21 Servizio Idro-Meteo-Clima, ARPA Emilia-Romagna, Bologna, Italy
  • | 22 European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
  • | 23 Laboratoire de Physique des Oceans, Brest, France
  • | 24 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 25 Met Office, Exeter, United Kingdom
  • | 26 NOAA/Earth System Research Laboratory, and National Center for Atmospheric Research, Boulder, Colorado
  • | 27 Met Office, Exeter, United Kingdom
  • | 28 Texas A&M University, College Station, Texas
  • | 29 Department of Atmospheric and Environmental Science, University at Albany, State University of New York, Albany, New York
  • | 30 Servizio Idro-Meteo-Clima, ARPA Emilia-Romagna, Bologna, Italy
  • | 31 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 32 NASA Jet Propulsion Laboratory, Pasadena, California
  • | 33 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
  • | 34 NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The Observing System Research and Predictability Experiment (THORPEX) was a 10-yr, international research program organized by the World Meteorological Organization’s World Weather Research Program. THORPEX was motivated by the need to accelerate the rate of improvement in the accuracy of 1-day to 2-week forecasts of high-impact weather for the benefit of society, the economy, and the environment. THORPEX, which took place from 2005 to 2014, was the first major international program focusing on the advancement of global numerical weather prediction systems since the Global Atmospheric Research Program, which took place almost 40 years earlier, from 1967 through 1982. The scientific achievements of THORPEX were accomplished through bringing together scientists from operational centers, research laboratories, and the academic community to collaborate on research that would ultimately advance operational predictive skill. THORPEX included an unprecedented effort to make operational products readily accessible to the broader academic research community, with community efforts focused on problems where challenging science intersected with the potential to accelerate improvements in predictive skill. THORPEX also collaborated with other major programs to identify research areas of mutual interest, such as topics at the intersection of weather and climate. THORPEX research has 1) increased our knowledge of the global-to-regional influences on the initiation, evolution, and predictability of high-impact weather; 2) provided insight into how predictive skill depends on observing strategies and observing systems; 3) improved data assimilation and ensemble forecast systems; 4) advanced knowledge of high-impact weather associated with tropical and polar circulations and their interactions with midlatitude flows; and 5) expanded society’s use of weather information through applied and social science research.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: David B. Parsons, dparsons@ou.edu

A supplement to this article is available online (10.1175/BAMS-D-14-00025.2)

Abstract

The Observing System Research and Predictability Experiment (THORPEX) was a 10-yr, international research program organized by the World Meteorological Organization’s World Weather Research Program. THORPEX was motivated by the need to accelerate the rate of improvement in the accuracy of 1-day to 2-week forecasts of high-impact weather for the benefit of society, the economy, and the environment. THORPEX, which took place from 2005 to 2014, was the first major international program focusing on the advancement of global numerical weather prediction systems since the Global Atmospheric Research Program, which took place almost 40 years earlier, from 1967 through 1982. The scientific achievements of THORPEX were accomplished through bringing together scientists from operational centers, research laboratories, and the academic community to collaborate on research that would ultimately advance operational predictive skill. THORPEX included an unprecedented effort to make operational products readily accessible to the broader academic research community, with community efforts focused on problems where challenging science intersected with the potential to accelerate improvements in predictive skill. THORPEX also collaborated with other major programs to identify research areas of mutual interest, such as topics at the intersection of weather and climate. THORPEX research has 1) increased our knowledge of the global-to-regional influences on the initiation, evolution, and predictability of high-impact weather; 2) provided insight into how predictive skill depends on observing strategies and observing systems; 3) improved data assimilation and ensemble forecast systems; 4) advanced knowledge of high-impact weather associated with tropical and polar circulations and their interactions with midlatitude flows; and 5) expanded society’s use of weather information through applied and social science research.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: David B. Parsons, dparsons@ou.edu

A supplement to this article is available online (10.1175/BAMS-D-14-00025.2)

Supplementary Materials

    • Supplemental Materials (PDF 383 KB)
Save