• Albrecht, R. I., S. J. Goodman, D. E. Buechler, R. J. Blakeslee, and H. J. Christian, 2016: Where are the lightning hotspots on Earth? Bull. Amer. Meteor. Soc., 97, 20512068, doi:10.1175/BAMS-D-14-00193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Apke, J. M., J. R. Mecikalski, and C. P. Jewett, 2016: Analysis of mesoscale atmospheric flows above mature deep convection using Super Rapid Scan geostationary satellite data. J. Appl. Meteor. Climatol., 55, 18591887, doi:10.1175/JAMC-D-15-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baucom, J. G., M. P. Weinreb, E. C. Wack, and R. X. Johnson, 1999: Post-launch tests of radiometric functions of GOES sensors. Earth Observing Systems IV, W. L. Barnes, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 3750), 454, doi:10.1117/12.363541.

    • Crossref
    • Export Citation
  • Bedka, K. M., J. Brunner, R. Dworak, W. Feltz, J. Otkin, and T. Greenwald, 2010: Objective satellite-based overshooting top detection using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181202, doi:10.1175/2009JAMC2286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., C. Wang, R. Rogers, L. D. Carey, W. Feltz, and J. Kanak, 2015: Examining deep convective cloud evolution using total lightning, WSR-88D, and GOES-14 Super Rapid Scan datasets. Wea. Forecasting, 30, 571590, doi:10.1175/WAF-D-14-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessho, K., and et al. , 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151183, doi:10.2151/jmsj.2016-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boeing, 2006: GOES N data book. Revision B, Boeing Co. Publ. CDRL PM-1-1-03, 220 pp. [Available online at http://goes.gsfc.nasa.gov/text/goes.databookn.html.]

  • Bresky, W. C., J. M. Daniels, A. A. Bailey, and S. T. Wanzong, 2012: New methods toward minimizing the slow speed bias associated with atmospheric motion vectors. J. Appl. Meteor. Climatol., 51, 21372151, doi:10.1175/JAMC-D-11-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., and D. R. MacGorman, 2013: Theory and observations of controls on lightning flash spectra. J. Atmos. Soc., 70, 40124029, doi:10.1175/JAS-D-12-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404414, doi:10.1016/j.atmosres.2012.06.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., R. J. Blakeslee, and S. J. Goodman, 1989: The detection of lightning from geostationary orbit. J. Geophys. Res., 94, 13 32913 337, doi:10.1029/JD094iD11p13329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and A. K. Heidinger, 2013: Evolution of severe and nonsevere convection inferred from GOES-derived cloud properties. J. Appl. Meteor. Climatol., 52, 20092023, doi:10.1175/JAMC-D-12-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and D. T. Lindsey, 2014: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639653, doi:10.1175/WAF-D-13-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • Da, C., 2015: Preliminary assessment of the Advanced Himawari Imager (AHI) measurement onboard Himawari-8 geostationary satellite. Remote Sens. Lett., 6, 637646, doi:10.1080/2150704X.2015.1066522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daniels, J., W. Bresky, C. Velden, I. Genkova, S. Wanzong, and H. Berger, 2008: Algorithm and software development of atmospheric motion vector (AMV) products for the future GOES-R Advanced Baseline Imager. Proc. Ninth Int. Winds Workshop, Annapolis, MD, EUMETSAT. [Available online at http://cimss.ssec.wisc.edu/iwwg/workshop9/ext_abstracts/5.%20Daniels_Algorithm%20adn%20software%20development%20of%20AMV%20products%20for%20the%20future%20GOES-R%20ABI.pdf.]

  • Davis G., 2007: History of the NOAA satellite program. J. Appl. Remote Sens., 1, 012504, doi:10.1117/1.2642347.

  • Ding, S., P. Yang, F. Weng, Q. Liu, Y. Han, P. van Delst, J. Li, and B. Baum, 2011: Validation of the Community Radiative Transfer Model. J. Quant. Spectrosc. Radiat. Transfer, 112, 10501064, doi:10.1016/j.jqsrt.2010.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dworak, R., K. Bedka, J. Brunner, and W. Feltz, 2012: Comparison between GOES-12 overshooting-top detections, WSR-88D radar reflectivity, and severe storm reports. Wea. Forecasting, 27, 684699, doi:10.1175/WAF-D-11-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, L., Y. Yu, H. Xu, and D. Sun, 2014: New retrieval algorithm for deriving land surface temperature from geostationary orbiting satellite observations. IEEE Trans. Geosci. Remote Sens., 52, 819828, doi:10.1109/TGRS.2013.2244213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatlin, P. N., and S. J. Goodman, 2010: A total lightning trending algorithm to identify severe thunderstorms. J. Atmos. Oceanic Technol., 27, 322, doi:10.1175/2009JTECHA1286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and et al. , 2012: The GOES-R Proving Ground: Accelerating user readiness for the next-generation geostationary environmental satellite system. Bull. Amer. Meteor. Soc., 93, 10291040, doi:10.1175/BAMS-D-11-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and et al. , 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, doi:10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gravelle, C. M., J. R. Mecikalski, W. E. Line, K. M. Bedka, R. A. Petersen, J. M. Sieglaff, G. T. Stano, and S. J. Goodman, 2016: Demonstration of a GOES-R satellite convective toolkit to “bridge the gap” between severe weather watches and warnings: An example from the 20 May 2013 Moore, Oklahoma, tornado outbreak. Bull. Amer. Meteor. Soc., 97, 6984, doi:10.1175/BAMS-D-14-00054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenwald, T., and et al. , 2016: Real-time simulation of the GOES-R ABI for user readiness and product evaluation. Bull. Amer. Meteor. Soc., 97, 245261, doi:10.1175/BAMS-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayden, C. M., and T. J. Schmit, 1991: The anticipated sounding capabilities of GOES-I and beyond. Bull. Amer. Meteor. Soc., 72, 18351846, doi:10.1175/1520-0477(1991)072<1835:TASCOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hillger, D. W., and T. J. Schmit, 2011: The GOES-15 science test: Imager and sounder radiance and product validations. NOAA Tech. Rep. NESDIS 141, 101 pp.

  • Hillger, D. W., T. J. Schmit, and J. M. Daniels, 2003: Imager and sounder radiance and product validation for the GOES-12 science test. NOAA Tech. Rep. NESDIS 115, 66 pp.

  • Kalluri, S., J. Gundy, B. Haman, A. Paullin, P. Van Rompay, D. Vititoe, and A. Weiner, 2015a: A high performance remote sensing product generation system based on a service oriented architecture for the next generation of Geostationary Operational Environmental Satellites. Remote Sens., 7, 10 38510 399, doi:10.3390/rs70810385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalluri, S., P. Sullivan, and S. Goodman, 2015b: The next series of geostationary weather satellites. Meteor. Technol. Int., April, 1620.

    • Search Google Scholar
    • Export Citation
  • Lee, Y., Z. Li, J. Li, and T. J. Schmit, 2014: Evaluation of the GOES-R ABI LAP retrieval algorithm using the GOES-13 sounder. J. Atmos. Oceanic Technol., 31, 319, doi:10.1175/JTECH-D-13-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., T. J. Schmit, W. M. MacKenzie Jr., C. P. Jewett, M. M. Gunshor, and L. Grasso, 2012: 10.35 μm: An atmospheric window on the GOES-R Advanced Baseline Imager with less moisture attenuation. J. Appl. Remote Sens., 6, 063598, doi:10.1117/1.JRS.6.063598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Line, W., T. J. Schmit, D. T. Lindsey, and S. J. Goodman, 2016: Use of geostationary rapid scan imagery by the Storm Prediction Center (SPC). Wea. Forecasting, 31, 483494, doi:10.1175/WAF-D-15-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., C. P. Jewett, J. M. Apke, and L. D. Carey, 2016: Analysis of cumulus cloud updrafts as observed with 1-min resolution Super Rapid Scan GOES imagery. Mon. Wea. Rev., 144, 811830, doi:10.1175/MWR-D-14-00399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and J. F. W. Purdom, 1994: Introducing GOES-I: The first of a new generation of Geostationary Operational Environmental Satellites. Bull. Amer. Meteor. Soc., 75, 757781, doi:10.1175/1520-0477(1994)075<0757:IGITFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., C. C. Schmidt, T. J. Schmit, and D. W. Hillger, 2012: A case for natural colour imagery from geostationary satellites, and an approximation for the GOES-R ABI. Int. J. Remote Sens., 33, 39994028, doi:10.1080/01431161.2011.637529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., W. C. Straka III, A. S. Bachmeier, T. J. Schmit, P. T. Partain, and Y.-J. Noh, 2013: Earth-viewing satellite perspectives on the Chelyabinsk meteor event. Proc. Natl. Acad. Sci. USA, 110, 18 09218 097, doi:10.1073/pnas.1307965110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., T. J. Schmit, C. Seaman, D. T. Lindsey, M. M. Gunshor, R. A. Kohrs, Y. Sumida, and D Hillger, 2016: A sight for sore eyes—The return of true color to geostationary satellites. Bull. Amer. Meteor. Soc., 97, 18031816, doi:10.1175/BAMS-D-15-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2015a: Mesoscale discussion 721. [Available online at www.spc.noaa.gov/products/md/2015/md0721.html.]

  • NOAA, 2015b: Mesoscale discussion 722. [Available online at www.spc.noaa.gov/products/md/2015/md0722.html.]

  • NOAA–NASA, 2016: GOES-R series: Ground segment project. Version 3.9, Functional and Performance Specification 416-R-FPS-0089, 298 pp. [Available online at www.goes-r.gov/resources/docs/GOES-R_GS_FPS.pdf.]

  • Okuyama, A., and et al. , 2015: Preliminary validation of Himawari-8/AHI navigation and calibration. Earth Observing Systems XX, J. J. Butler, X. Xiong, and X. Gu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9607), 96072E, doi:10.1117/12.2188978.

    • Crossref
    • Export Citation
  • Otkin, J. A., T. J. Greenwald, J. Sieglaff, and H. L. Huang, 2009: Validation of a large-scale simulated brightness temperature dataset using SEVIRI satellite observations. J. Appl. Meteor. Climatol., 48, 16131626, doi:10.1175/2009JAMC2142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., A. K. Heidinger, and J. Sieglaff, 2013: Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements. J. Geophys. Res. Atmos., 118, 14361458, doi:10.1002/jgrd.50173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., J. Sieglaff, and J. Cintineo, 2015a: Spectrally enhanced cloud objects—A generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 1. Multispectral analysis. J. Geophys. Res. Atmos., 120, 78137841, doi:10.1002/2014JD022968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., J. Sieglaff, and J. Cintineo, 2015b: Spectrally enhanced cloud objects—A generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 2. Cloud object analysis and global application. J. Geophys. Res. Atmos., 120, 78427870, doi:10.1002/2014JD022969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., H. J. Christian, and S. A. Rutledge, 2005: TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett., 32, L14819, doi:10.1029/2005GL023236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, R. M., and et al. , 2013: The emergence of weather-related test beds linking research and forecasting operations. Bull. Amer. Meteor. Soc., 94, 11871211, doi:10.1175/BAMS-D-12-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992, doi:10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelson III, and G. S. Wade, 2002: Validation and use of GOES sounder moisture information. Wea. Forecasting, 17, 139154, doi:10.1175/1520-0434(2002)017<0139:VAUOGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation Advanced Baseline Imager (ABI) on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, doi:10.1175/BAMS-86-8-1079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., J. Li, J. N. Li, W. F. Feltz, J. J. Gurka, M. D. Goldberg, and K. J. Schrab, 2008: The GOES-R Advanced Baseline Imager and the continuation of current sounder products. J. Appl. Meteor. Climatol., 47, 26962711, doi:10.1175/2008JAMC1858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., J. Li, S. A. Ackerman, and J. J. Gurka, 2009a: High-spectral- and high-temporal-resolution infrared measurements from geostationary orbit. J. Atmos. Oceanic Technol., 26, 22732292, doi:10.1175/2009JTECHA1248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., and et al. , 2009b: Many uses of the Geostationary Operational Environmental Satellite-10 sounder and imager during a high inclination state. J. Appl. Remote Sens., 3, 033514, doi:10.1117/1.3099709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., and et al. , 2013: Geostationary Operational Environmental Satellite (GOES)-14 super rapid scan operations to prepare for GOES-R. J. Appl. Remote Sens., 7, 073462, doi:10.1117/1.JRS.7.073462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., and et al. , 2015: Rapid Refresh information of significant events: Preparing users for the next generation of geostationary operational satellites. Bull. Amer. Meteor. Soc., 96, 561576, doi:10.1175/BAMS-D-13-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2009: Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol., 48, 25432563, doi:10.1175/2009JAMC2237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744755, doi:10.1175/WAF-D-10-05026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., D. C. Hartung, W. F. Feltz, L. M. Cronce, and L. Valliappa, 2013: A satellite-based convective cloud object tracking and multipurpose data fusion tool with application to developing convection. J. Atmos. Oceanic Technol., 30, 510525, doi:10.1175/JTECH-D-12-00114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., L. M. Cronce, and W. F. Feltz, 2014: Improving satellite-based convective cloud growth monitoring with visible optical depth retrievals. J. Appl. Meteor. Climatol., 53, 506520, doi:10.1175/JAMC-D-13-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stano, G. T., C. J. Schultz, L. D. Carey, D. R. MacGorman, and K. M. Calhoun, 2014: Total lightning observations and tools for the 20 May 2013 Moore, Oklahoma, tornadic supercell. J. Oper. Meteor., 2, 7188, doi:10.15191/nwajom.2014.0207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suomi, V. E., and R. Parent, 1968: A color view of Planet Earth. Bull. Amer. Meteor. Soc., 49, 7475.

  • Xiong, X., H. Erives, S. Xiong, X. Xie, J. Esposito, J. Sun, and W. Barnes, 2005: Performance of Terra MODIS solar diffuser and solar diffuser stability monitor. Observing Systems X, J. J. Butler, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5882), 58820S, doi:10.1117/12.615334.

    • Crossref
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759, doi:10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., C. Liu, D. J. Cecil, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1859 1859 314
PDF Downloads 1208 1208 211

A Closer Look at the ABI on the GOES-R Series

View More View Less
  • 1 NOAA/NESDIS/Center for Satellite Applications and Research/Advanced Satellite Products Branch, Madison, Wisconsin
  • | 2 Space and Intelligence Systems, Harris Corporation, Fort Wayne, Indiana
  • | 3 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin
  • | 4 NOAA/NESDIS/Center for Satellite Applications and Research, Operational Products Development Branch, College Park, Maryland
  • | 5 NOAA/NESDIS/GOES-R Program Office, Greenbelt, Maryland
  • | 6 NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

The Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-R (GOES-R) is America’s next-generation geostationary advanced imager. GOES-R launched on 19 November 2016. The ABI is a state-of-the-art 16-band radiometer, with spectral bands covering the visible, near-infrared, and infrared portions of the electromagnetic spectrum. Many attributes of the ABI—such as spectral, spatial, and temporal resolution; radiometrics; and image navigation/registration—are much improved from the current series of GOES imagers. This paper highlights and discusses the expected improvements of each of these attributes. From ABI data many higher-level-derived products can be generated and used in a large number of environmental applications. The ABI’s design allows rapid-scan and contiguous U.S. imaging automatically interleaved with full-disk scanning. In this paper the expected instrument attributes are covered, as they relate to signal-to-noise ratio, image navigation and registration, the various ABI scan modes, and other parameters. There will be several methods for users to acquire GOES-R imagery and products depending on their needs. These include direct reception of the imagery via the satellite downlink and an online-accessible archive. The information from the ABI on the GOES-R series will be used for many applications related to severe weather, tropical cyclones and hurricanes, aviation, natural hazards, the atmosphere, the ocean, and the cryosphere.

The ABI on the GOES-R series is America’s next-generation geostationary advanced imager and will dramatically improve the monitoring of many phenomena at finer time and space scales.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Timothy J. Schmit, tim.j.schmit@noaa.gov

A supplement to this article is available online (10.1175/BAMS-D-15-00230.2)

Abstract

The Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-R (GOES-R) is America’s next-generation geostationary advanced imager. GOES-R launched on 19 November 2016. The ABI is a state-of-the-art 16-band radiometer, with spectral bands covering the visible, near-infrared, and infrared portions of the electromagnetic spectrum. Many attributes of the ABI—such as spectral, spatial, and temporal resolution; radiometrics; and image navigation/registration—are much improved from the current series of GOES imagers. This paper highlights and discusses the expected improvements of each of these attributes. From ABI data many higher-level-derived products can be generated and used in a large number of environmental applications. The ABI’s design allows rapid-scan and contiguous U.S. imaging automatically interleaved with full-disk scanning. In this paper the expected instrument attributes are covered, as they relate to signal-to-noise ratio, image navigation and registration, the various ABI scan modes, and other parameters. There will be several methods for users to acquire GOES-R imagery and products depending on their needs. These include direct reception of the imagery via the satellite downlink and an online-accessible archive. The information from the ABI on the GOES-R series will be used for many applications related to severe weather, tropical cyclones and hurricanes, aviation, natural hazards, the atmosphere, the ocean, and the cryosphere.

The ABI on the GOES-R series is America’s next-generation geostationary advanced imager and will dramatically improve the monitoring of many phenomena at finer time and space scales.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Timothy J. Schmit, tim.j.schmit@noaa.gov

A supplement to this article is available online (10.1175/BAMS-D-15-00230.2)

Supplementary Materials

    • Supplemental Materials (ZIP 52.4 MB)
Save