• Adler, B., and N. Kalthoff, 2014: Multi-scale transport processes observed in the boundary layer over a mountainous island. Bound.-Layer Meteor., 153, 515537, doi:10.1007/s10546-014-9957-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, D., and et al. , 2012: Issues in high-resolution atmospheric modeling in complex topography—The HiRCoT workshop. Croat. Meteor. J., 47, 311.

    • Search Google Scholar
    • Export Citation
  • Aubinet, M., T. Vesala, and D. Papale, Eds., 2012: Eddy Covariance: A Practical Guide to Measurements and Data Analysis. Springer, 438 pp.

    • Crossref
    • Export Citation
  • Avissar, R., and R. A. Pielke, 1989: A parameterization of heterogeneous land surfaces for atmospheric models and its impact on regional meteorology. Mon. Wea. Rev., 117, 21132134, doi:10.1175/1520-0493(1989)117<2113:APOHLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baklanov, A. A., and et al. , 2011: The nature, theory, and modeling of atmospheric planetary boundary layers. Bull. Amer. Meteor. Soc., 92, 123128, doi:10.1175/2010BAMS2797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrendt, A., and et al. , 2011: Observations of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP8b. Quart. J. Roy. Meteor. Soc., 137, 81100, doi:10.1002/qj.758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrendt, A., V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, 2015: Profiles of second to fourth order moments of turbulent temperature fluctuations in the convective boundary layer: First measurements with rotational Raman lidar. Atmos. Chem. Phys., 15, 54855500, doi:10.5194/acp-15-5485-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and J. R. C. Hunt, 1998: Turbulent flows over hills and waves. Annu. Rev. Fluid Mech., 30, 507538, doi:10.1146/annurev.fluid.30.1.507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beyrich, F., and H. T. Mengelkamp, 2006: Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment—An overview. Bound.-Layer Meteor., 121, 532, doi:10.1007/s10546-006-9079-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braam, M., F. C. Bosveld, and A. F. Moene, 2012: On Monin–Obukhov scaling in and above the atmospheric surface layer: The complexities of elevated scintillometer measurements. Bound.-Layer Meteor., 144, 157177, doi:10.1007/s10546-012-9716-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buzzi, M., M. W. Rotach, M. Raschendorfer, and A. A. M. Holtslag, 2011: Evaluation of the COSMO-SC turbulence scheme in a shear-driven stable boundary layer. Meteor. Z., 20, 335350, doi:10.1127/0941-2948/2011/0050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catalano, F., and C.-H. Moeng, 2010: Large-eddy simulation of the daytime boundary layer in an idealized valley using the Weather Research and Forecasting numerical model. Bound.-Layer Meteor., 137, 4975, doi:10.1007/s10546-010-9518-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F. K., A. P. Weigel, R. L. Street, M. W. Rotach, and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity studies. J. Appl. Meteor. Climatol., 45, 6386, doi:10.1175/JAM2322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuxart, J., 2015: When can a high-resolution simulation over complex terrain be called LES? Front. Earth Sci., 3, 87, doi:10.3389/feart.2015.00087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Defant, F., 1949: A theory of slope winds, along with remarks on the theory of mountain winds and valley winds (Zur Theorie der Hangwinde nebst Bemerkungen zur Theorie der Berg-und Talwinde). Alpine Meteorology: Translations of Classic Contributions by A. Wagner, E. Ekhart, and F. Defant, C. D. Whiteman and E. Dreiseitl, Eds., Pacific Northwest Laboratory Rep., 95–121. [Available online at www.inscc.utah.edu/∼whiteman/homepage/articles/Whiteman1984osti.gov.pdf.]

  • Doran, J. C., J. D. Fast, and J. Horel, 2002: The VTMX 2000 campaign. Bull. Amer. Meteor. Soc., 83, 537551, doi:10.1175/1520-0477(2002)083<0537:TVC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epifanio, C. C., 2007: A method for imposing surface stress and heat flux conditions in finite-difference models with steep terrain. Mon. Wea. Rev., 135, 906917, doi:10.1175/MWR3297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., and et al. , 2015: The MATERHORN: Unraveling the intricacies of mountain weather. Bull. Amer. Meteor. Soc., 96, 19451967, doi:10.1175/BAMS-D-13-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1990: The internal boundary layer—A review. Bound.-Layer Meteor., 50, 171203, doi:10.1007/BF00120524.

  • Gohm, A., G. Zängl, and G. J. Mayr, 2004: South foehn in the Wipp valley on 24 October 1999 (MAP IOP 10): Verification of high-resolution numerical simulations with observations. Mon. Wea. Rev., 132, 78102, doi:10.1175/1520-0493(2004)132<0078:SFITWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gohm, A., and et al. , 2009: Air pollution transport in an alpine valley: Results from airborne and ground-based observations. Bound.-Layer Meteor., 131, 441463, doi:10.1007/s10546-009-9371-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled on-line chemistry within the WRF Model. Atmos. Environ., 39, 69576975, doi:10.1016/j.atmosenv.2005.04.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grisogono, B., T. Jurlina, Ž. Večenaj, and I. Guttler, 2015: Weakly non-linear Prandtl model for simple slope flows. Quart. J. Roy. Meteor. Soc., 141, 883892, doi:10.1002/qj.2406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grubišić, V., and et al. , 2008: The Terrain-Induced Rotor Experiment. Bull. Amer. Meteor. Soc., 89, 15131533, doi:10.1175/2008BAMS2487.1.

  • Gryning, S.-E., and E. Batchvarova, 1990: Analytical model for the growth of the coastal internal boundary layer during onshore flow. Quart. J. Roy. Meteor. Soc., 116, 187203, doi:10.1002/qj.49711649108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haiden, T., A. Kann, C. Wittmann, G. Pistotnik, B. Bica, and C. Gruber, 2011: The Integrated Nowcasting through Comprehensive Analysis (INCA) system and its validation over the eastern Alpine region. Wea. Forecasting, 26, 166183, doi:10.1175/2010WAF2222451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, N. J., R. J. Hogan, and H. F. Dacre, 2013: A method to diagnose boundary-layer type using Doppler lidar. Quart. J. Roy. Meteor. Soc., 139, 16811693, doi:10.1002/qj.2068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and F. T. M. Nieuwstadt, 1986: Scaling the atmospheric boundary layer. Bound.-Layer Meteor., 36, 201209, doi:10.1007/BF00117468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J. R. C., S. Leibovich, and K. J. Richards, 1988: Turbulent shear flows over low hills. Quart. J. Roy. Meteor. Soc., 114, 14351470, doi:10.1002/qj.49711448405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janicke, L., 2004: Enhancement of a diagnostic wind field model for licensing industrial facilities (TA Luft). German Federal Environmental Agency UFOPLAN Project 200 43 256, 196 pp.

  • Leuenberger, D., M. Koller, O. Fuhrer, and C. Schar, 2010: A generalization of the SLEVE vertical coordinate. Mon. Wea. Rev., 138, 36833689, doi:10.1175/2010MWR3307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leukauf, D., A. Gohm, M. W. Rotach, and J. S. Wagner, 2015: The impact of the temperature inversion breakup on the exchange of heat and mass in an idealized valley: Sensitivity to the radiative forcing. J. Appl. Meteor. Climatol., 54, 21992216, doi:10.1175/JAMC-D-15-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, doi:10.1146/annurev-fluid-010313-141354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallaun, C., A. Giez, and R. Baumann, 2015: Calibration of 3D wind measurements on a single engine research aircraft. Atmos. Meas. Tech., 8, 31773196, doi:10.5194/amt-8-3177-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martins, C. A., O. L. L. Moraes, O. C. Acevedo, and G. A. Degrazia, 2009: Turbulence intensity parameters over a very complex terrain. Bound.-Layer Meteor., 133, 3545, doi:10.1007/s10546-009-9413-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, P. J., and R. I. Sykes, 1979: Flow over an isolated hill of moderate slope. Quart. J. Roy. Meteor. Soc., 105, 383395, doi:10.1002/qj.49710544405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massaro, G., I. Stiperski, I. Pospichal, and M. W. Rotach, 2015: Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain. Atmos. Meas. Tech., 8, 33553367, doi:10.5194/amt-8-3355-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNicholas, C., and D. D. Turner, 2014: Characterizing the convective boundary layer turbulence with a high spectral resolution lidar. J. Geophys. Res. Atmos., 119, 12 91012 927, doi:10.1002/2014JD021867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 151, 163187.

  • Nadeau, D. F., E. R. Pardyjak, C. W. Higgins, and M. B. Parlange, 2013: Similarity scaling over a steep alpine slope. Bound.-Layer Meteor., 147, 401419, doi:10.1007/s10546-012-9787-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable nocturnal boundary layer. J. Atmos. Sci., 41, 22022216, doi:10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oettl, D., 2015: Evaluation of the revised Lagrangian particle model GRAL against wind-tunnel and field observations in the presence of obstacles. Bound.-Layer Meteor., 155, 271287, doi:10.1007/s10546-014-9993-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oldroyd, H. J., E. R. Pardyjak, H. Huwald, and M. B. Parlange, 2016: Adapting tilt corrections and the governing flow equations for steep, fully three-dimensional, mountainous terrain. Bound.-Layer Meteor., 159, 539565, doi:10.1007/s10546-015-0066-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pianezze, J., 2013: Modélisation de la structure verticale de la turbulence optique en milieu naturel. Ph.D. thesis, University of Grenoble, 215 pp.

  • Prandtl, L., 1942: Führer durch die Strömungslehre. F. Vieweg und Sohn, 382 pp.

  • Prandtl, L., 1952: Mountain and valley winds in stratified air. Essentials of Fluid Dynamics, Blackie and Son, 422–425.

  • Rampanelli, G., D. Zardi, and R. Rotunno, 2004: Mechanisms of up-valley winds. J. Atmos. Sci., 61, 30973111, doi:10.1175/JAS-3354.1.

  • Raupach, M. R., R. A. Antonia, and S. Rajagopalan, 1991: Rough-wall turbulent boundary layers. Appl. Mech. Rev., 44, 125, doi:10.1115/1.3119492.

  • Rihani, J. F., F. K. Chow, and R. M. Maxwell, 2015: Isolating effects of terrain and soil moisture heterogeneity on the atmospheric boundary layer: Idealized simulations to diagnose land-atmosphere feedbacks. J. Adv. Model. Earth Syst., 7, 915937, doi:10.1002/2014MS000371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., 1993: Turbulence close to a rough urban surface part I: Reynolds stress. Bound.-Layer Meteor., 65, 128, doi:10.1007/BF00708816.

  • Rotach, M. W., and D. Zardi, 2007: On the boundary layer structure over highly complex terrain: Key findings from MAP. Quart. J. Roy. Meteor. Soc., 133, 937948, doi:10.1002/qj.71.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and et al. , 2004: Turbulence structure and exchange processes in an Alpine valley: The Riviera project. Bull. Amer. Meteor. Soc., 85, 13671385, doi:10.1175/BAMS-85-9-1367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., M. Andretta, P. Calanca, A. P. Weigel, and A. Weiss, 2008: Turbulence characteristics and exchange mechanisms in highly complex terrain. Acta Geophys., 56, 194219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and et al. , 2009: MAP D-PHASE: Real-time demonstration of weather forecast quality in the Alpine region. Bull. Amer. Meteor. Soc., 90, 13211336, doi:10.1175/2009BAMS2776.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., G. Wohlfahrt, A. Hansel, M. Reif, J. Wagner, and A. Gohm, 2014: The world is not flat: Implications for the global carbon balance. Bull. Amer. Meteor. Soc., 95, 10211028, doi:10.1175/BAMS-D-13-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., A. Gohm, M. N. Lang, D. Leukauf, I. Stiperski, and J. S. Wagner, 2015: On the vertical exchange of heat, mass and momentum over complex, mountainous terrain. Front. Earth Sci., 3, 76, doi:10.3389/feart.2015.00076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sathe, A., J. Mann, J. Gottschall, and M. S. Courtney, 2011: Can wind lidars measure turbulence? J. Atmos. Oceanic Technol., 28, 853868, doi:10.1175/JTECH-D-10-05004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sathe, A., J. Mann, N. Vasiljevic, and G. Lea, 2015: A six-beam method to measure turbulence statistics using ground-based wind lidars. Atmos. Meas. Tech., 8, 729740, doi:10.5194/amt-8-729-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savelyev, S. A., and P. A. Taylor, 2005: Internal boundary layers: I. Height formulae for neutral and diabatic flows. Bound.-Layer Meteor., 115, 125, doi:10.1007/s10546-004-2122-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidli, J., 2013: Daytime heat transfer processes over mountainous terrain. J. Atmos. Sci., 70, 40414066, doi:10.1175/JAS-D-13-083.1.

  • Seth, A., F. Giorgi, and R. E. Dickinson, 1994: Simulating fluxes from heterogeneous land surface: Explicit subgrid method employing the Biosphere-Atmosphere Transfer Scheme (BATS). J. Geophys. Res., 99, 18 65118 667, doi:10.1029/94JD01330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinacker, R., 1984: Area–height distribution of a valley and its relation to the valley wind. Contrib. Atmos. Phys., 57, 6471.

  • Stiperski, I., and M. W. Rotach, 2016: On the measurement of turbulence over complex mountainous topography. Bound.-Layer Meteor., 159, 97121, doi:10.1007/s10546-015-0103-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer, 666 pp.

    • Crossref
    • Export Citation
  • Tampieri, F., A. Maurizi, and A. Viola, 2009: An investigation on temperature variance scaling in the atmospheric surface layer. Bound.-Layer Meteor., 132, 3142, doi:10.1007/s10546-009-9383-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tillman, J. E., 1972: The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J. Appl. Meteor., 11, 783792, doi:10.1175/1520-0450(1972)011<0783:TIDOSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turnipseed, A. A., D. E. Anderson, P. D. Blanken, W. M. Baugh, and R. K. Monson, 2003: Airflows and turbulent flux measurements in mountainous terrain: Part 1. Canopy and local effects. Agric. For. Meteor., 119, 121, doi:10.1016/S0168-1923(03)00136-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vergeiner, I., and E. Dreiseitl, 1987: Valley winds and slope winds—Observations and elementary thoughts. Meteor. Atmos. Phys., 36, 264286, doi:10.1007/BF01045154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, A., 1932: Der taegliche Luftdruck- und Temperaturgang in der freien Atmosphaere und in Gebirgstaelern. Gerlands Beitr. Geophys., 37, 315344.

    • Search Google Scholar
    • Export Citation
  • Wagner, J. S., A. Gohm, and M. W. Rotach, 2014: The impact of horizontal model grid resolution on the boundary layer structure over an idealized valley. Mon. Wea. Rev., 142, 34463465, doi:10.1175/MWR-D-14-00002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, J. S., A. Gohm, and M. W. Rotach, 2015a: The impact of valley geometry on daytime thermally driven flows and vertical transport processes. Quart. J. Roy. Meteor. Soc., 141, 17801794, doi:10.1002/qj.2481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, J. S., A. Gohm, and M. W. Rotach, 2015b: Influence of along-valley terrain heterogeneity on exchange processes over idealized valleys. Atmos. Chem. Phys., 15, 65896603, doi:10.5194/acp-15-6589-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., and M. W. Rotach, 2004: Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley. Quart. J. Roy. Meteor. Soc., 130, 26052627, doi:10.1256/qj.03.214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., F. K. Chow, and M. W. Rotach, 2007: On the nature of turbulent kinetic energy in a steep and narrow Alpine valley. Bound.-Layer Meteor., 123, 177199, doi:10.1007/s10546-006-9142-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, A., M. Hennes, and M. W. Rotach, 2001: Derivation of refractive index and temperature gradients from optical scintillometry for the correction of atmospheric induced problems in highly precise geodetic measurements. Surv. Geophys., 22, 589596, doi:10.1023/A:1015644923182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weusthoff, T, F. Ament, M. Arpagaus, and M. W. Rotach, 2010: Assessing the benefits of convection-permitting models by neighborhood verification: Examples from MAP D-PHASE. Mon. Wea. Rev., 138, 34183433, doi:10.1175/2010MWR3380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

    • Crossref
    • Export Citation
  • Whiteman, C. D., and J. C. Doran, 1993: The relationship between overlaying synoptic-scale flow and winds within a valley. J. Appl. Meteor., 32, 16691682, doi:10.1175/1520-0450(1993)032<1669:TRBOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., S. Pal, D. D. Turner, and E. Wagner, 2010: Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer? Bound.-Layer Meteor., 136, 253284, doi:10.1007/s10546-010-9494-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and et al. , 2011: The Convective and Orographically-induced Precipitation Study (COPS): The scientific strategy, the field phase, and research highlights. Quart. J. Roy. Meteor. Soc., 137, 330, doi:10.1002/qj.752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

    • Crossref
    • Export Citation
  • Zängl, G., 2004: A reexamination of the valley wind system in the Alpine Inn valley with numerical simulations. Meteor. Atmos. Phys., 87, 241256, doi:10.1007/s00703-003-0056-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zardi, D., and C. D. Whiteman, 2013: Diurnal mountain wind systems. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. DeWekker, and B. Snyder, Eds., Springer, 35–119.

    • Crossref
    • Export Citation
  • Zhong, S., and F. K. Chow, 2012: Meso- and fine-scale modeling over complex terrain: Parameterizations and applications. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. DeWekker, and B. J. Snyder, Eds., Springer, 591–653.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 237 237 35
PDF Downloads 148 148 30

Investigating Exchange Processes over Complex Topography: The Innsbruck Box (i-Box)

View More View Less
  • 1 Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
  • | 2 Federal Office of Meteorology and Climatology (MeteoSwiss), MeteoSwiss, Zurich, Switzerland
  • | 3 Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
  • | 4 Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria
  • | 5 Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
  • | 6 Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria
© Get Permissions
Restricted access

Abstract

The flow and turbulence structure in the atmospheric boundary layer over complex mountainous terrain determines Earth–atmosphere interaction, that is, the exchange of energy, mass, and momentum between the surface over such terrain and the free atmosphere. Numerical models for weather and climate, even when operated at high or very high grid resolution, are known to be deficient, leading to inaccurate local forecasts (weather) or scenarios (climate). The nature and reasons for these deficiencies, however, are difficult to assess because systematic and long-term combined observational/modeling studies in mountainous terrain are missing. The Innsbruck Box (i-Box) project aims at filling in this gap through a network of long-term turbulence sites in truly complex terrain, complemented by similarly continuous (surface based) remote sensing and numerical modeling at high to highest [i.e., large-eddy simulation (LES)] resolution. This contribution details the i-Box approach, the experimental design, and available data, as well as the numerical modeling strategy. The first scientific highlights are presented to illustrate the potential of the i-Box data pool and possible future directions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Mathias W. Rotach, mathias.rotach@uibk.ac.at

A supplement to this article is available online (10.1175/BAMS-D-15-00246.2)

Abstract

The flow and turbulence structure in the atmospheric boundary layer over complex mountainous terrain determines Earth–atmosphere interaction, that is, the exchange of energy, mass, and momentum between the surface over such terrain and the free atmosphere. Numerical models for weather and climate, even when operated at high or very high grid resolution, are known to be deficient, leading to inaccurate local forecasts (weather) or scenarios (climate). The nature and reasons for these deficiencies, however, are difficult to assess because systematic and long-term combined observational/modeling studies in mountainous terrain are missing. The Innsbruck Box (i-Box) project aims at filling in this gap through a network of long-term turbulence sites in truly complex terrain, complemented by similarly continuous (surface based) remote sensing and numerical modeling at high to highest [i.e., large-eddy simulation (LES)] resolution. This contribution details the i-Box approach, the experimental design, and available data, as well as the numerical modeling strategy. The first scientific highlights are presented to illustrate the potential of the i-Box data pool and possible future directions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Mathias W. Rotach, mathias.rotach@uibk.ac.at

A supplement to this article is available online (10.1175/BAMS-D-15-00246.2)

Supplementary Materials

    • Supplemental Materials (PDF 1.19 MB)
Save