• AVISO, 2016: Ssalto/Duacs multimission altimeter products. [Available online at www.aviso.altimetry.fr/duacs/.]

  • Baehr, J., A. Stroup, and J. Marotzke, 2009: Testing concepts for continuous monitoring of the meridional overturning circulation in the South Atlantic. Ocean Modell., 29, 147153, doi:10.1016/j.ocemod.2009.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., C. W. Hughes, V. Roussenov, and R. G. Williams, 2007: Meridional coherence of the North Atlantic meridional overturning circulation. Geophys. Res. Lett., 34, L23606, doi:10.1029/2007GL031731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A. S., M. S. Lozier, S. F. Gary, and C. Böning, 2009: Interior pathways of the Atlantic meridional overturning circulation. Nature, 459, 243247, doi:10.1038/nature07979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M., and J. Marshall, 2016: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Rev. Geophys., 54, doi:10.1002/2015RG000493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, R. A., R. M. Hendry, and I. Yashayaev, 1998: A western boundary current meter array in the North Atlantic near 42°N. International WOCE Newsletter, No. 33, WOCE International Project Office, Southampton, United Kingdom, 33–34.

  • Condron, A., and P. Winsor, 2011: A subtropical fate awaited freshwater discharged from glacial Lake Agassiz. Geophys. Res. Lett., 38, L03705, doi:10.1029/2010GL046011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, S., and R. Marsh, 2010: Observing and modeling changes in the Atlantic MOC. Wiley Interdiscip. Rev.: Climate Change, 1, 180191, doi:10.1002/wcc.22.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S., and et al. , 2007: Temporal variability of the Atlantic meridional overturning circulation at 25°N. Science, 317, 935938, doi:10.1126/science.1141304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, S., and et al. , 2010: The present and future system for measuring the Atlantic Meridional Overturning Circulation and heat transport. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, J. Hall, D. E. Harrison, and D. Stammer, Eds., ESA Publ. WPP-306, doi:10.5270/OceanObs09.cwp.21.

    • Crossref
    • Export Citation
  • Czeschel, L., D. P. Marshall, and H. L. Johnson, 2010: Oscillatory sensitivity of Atlantic overturning to high-latitude forcing. Geophys. Res. Lett., 37, L10601, doi:10.1029/2010GL043177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and et al. , 2016: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modell., 97, 6590, doi:10.1016/j.ocemod.2015.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Jong, M. F., and L. de Steur, 2016: Strong winter cooling over the Irminger Sea in winter 2014–2015, exceptional deep convection, and the emergence of anomalously low SST. Geophys. Res. Lett., 43, 71067113, doi:10.1002/2016GL069596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., R. Zhang, and M. E. Mann, 2007: Decadal to centennial variability of the Atlantic from observations and models. Ocean Circulation: Mechanisms and Impacts—Past and Future Changes of Meridional Overturning, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 131148, doi:10.1029/173GM10.

    • Crossref
    • Export Citation
  • Dengler, M., J. Fischer, F. A. Schott, and R. Zantopp, 2006: Deep Labrador Current and its variability in 1996–2005. Geophys. Res. Lett., 33, L21S06, doi:10.1029/2006GL026702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deshayes, J., F. Straneo, and M. A. Spall, 2009: Mechanisms of variability in a convection basin. J. Mar. Res., 67, 273303, doi:10.1357/002224009789954757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Steur, L., 2015: Cruise report: Cruise 64PE400; OSNAP East leg 2, July 8-29 2015, Reykjavik-Reykjavik, Iceland, R/V Pelagia. Royal Netherlands Institute for Sea Research, 48 pp. [Available online at www.vliz.be/nl/imis?module=ref&refid=260561&printversion=1&dropIMIStitle=1.]

  • Eden, C., and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic oscillation (1865–1997). J. Climate, 14, 676691, doi:10.1175/1520-0442(2001)014<0676:NAIVOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, J., F. Schott, and M. Dengler, 2004: Boundary circulation at the exit of the Labrador Sea. J. Phys. Oceanogr., 34, 15481570, doi:10.1175/1520-0485(2004)034<1548:BCATEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., S. A. Josey, Z. L. Jacobs, R. Marsh, B. Sinha, and E. Van Sebille, 2016: Extreme air–sea interaction over the North Atlantic subpolar gyre during the winter of 2013–2014 and its sub-surface legacy. Climate Dyn., 46, 4027, doi:10.1007/s00382-015-2819-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., J. D. Zika, B. M. Sloyan, T. J. McDougall, and P. C. McIntosh, 2014: A thermohaline inverse method for estimating diathermohaline circulation and mixing. J. Phys. Oceanogr., 44, 26812697, doi:10.1175/JPO-D-14-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halloran, P. R., B. B. B. Booth, C. D. Jones, F. H. Lambert, D. J. McNeall, I. J. Totterdell, and C. Völker, 2015: The mechanisms of North Atlantic CO2 uptake in a large Earth System Model ensemble. Biogeosciences, 12, 44974508, doi:10.5194/bgd-11-14551-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, B., and S. Østerhus, 2007: Faroe Bank Channel overflow 1995–2005. Prog. Oceanogr., 75, 817856, doi:10.1016/j.pocean.2007.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heimbach, P., C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011: Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport: Toward observing system design. Deep-Sea Res. II, 58, 18581879, doi:10.1016/j.dsr2.2010.10.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschi, J., and J. Marotzke, 2007: Reconstructing the meridional overturning circulation from boundary densities and the zonal wind stress. J. Phys. Oceanogr., 37, 743763, doi:10.1175/JPO3019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, D. M., R. H. Thomas, B. deYoung, M. H. Ribergaard, and B. Lyberth, 2008: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci., 1, 659664, doi:10.1038/ngeo316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holliday, N. P., S. Bacon, J. Allen, and E. L. McDonagh, 2009: Circulation and transport in the western boundary current at Cape Farewell, Greenland. J. Phys. Oceanogr., 39, 18541870, doi:10.1175/2009JPO4160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holliday, N. P., S. A. Cunningham, C. Johnson, S. Gary, C. Griffiths, J. F. Read, and T. Sherwin, 2015: Multidecadal variability of potential temperature, salinity and transport in the eastern subpolar North Atlantic. J. Geophys. Res. Oceans, 120, 59455967, doi:10.1002/2015JC010762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jackson, L, R. Kahana, T. Graham, M. Ringer, T. Woollings, J. Mecking, and R. Wood, 2015: Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dyn., 45, 32993316, doi:10.1007/s00382-015-2540-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochumsen, K., D. Quadfasel, H. Valdimarsson, and S. Jónsson, 2012: Variability of the Denmark Strait overflow: Moored time series from 1996–2011. J. Geophys. Res., 117, C12003, doi:10.1029/2012JC008244.

    • Search Google Scholar
    • Export Citation
  • Kanzow, T., and et al. , 2007: Flow compensation associated with the MOC at 26.5°N in the Atlantic. Science, 317, 938941, doi:10.1126/science.1141293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karspeck, A. R., and et al. , 2015: Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Climate Dyn., doi:10.1007/s00382-015-2787-7, in press.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., and et al. , 2013: Global ocean storage of anthropogenic carbon. Biogeosciences, 10, 21692191, doi:10.5194/bg-10-2169-2013.

  • Kieke, D., and I. Yashayaev, 2015: Studies of Labrador Sea water formation and variability in the subpolar North Atlantic in the light of international partnership and collaboration. Prog. Oceanogr., 132, 220232, doi:10.1016/j.pocean.2014.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, B. A., and N. P. Holliday, 2015: RRS James Clark Ross cruise 302, 06 Jun–21 Jul 2014: The 2015 RAGNARRoC, OSNAP and extended Ellett Line cruise report. National Oceanography Centre Cruise Rep. 35, 76 pp.

  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climatic impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, doi:10.1029/2006GL026242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kortzinger, A., U. Send, D. W. R. Wallace, J. Karstensen, and M. DeGrandpre, 2008: The seasonal cycle of O2 and pCO2 in the central Labrador Sea: Atmospheric, biological and physical implications. Global Biogeochem. Cycles, 22, doi:10.1029/2007GB003029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf, 2007: On the driving processes of Atlantic meridional overturning circulation. Rev. Geophys., 45, 32, doi:10.1029/2004RG000166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazier, J., R. Hendry, A. Clarke, I. Yashayaev, and P. Rhines, 2002: Convection and restratification in the Labrador Sea, 1990–2000. Deep-Sea Res. I, 49, 18191835, doi:10.1016/S0967-0637(02)00064-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., T. Ilyina, A. Wolfgang, A. Müller, and F. Sienz, 2016: Decadal predictions of the North Atlantic CO2 uptake. Nat. Commun., 7, 11076, doi:10.1038/ncomms11076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, and A. Schweiger, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, doi:10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., 2012: Overturning in the North Atlantic. Annu. Rev. Mar. Sci., 4, 291315, doi:10.1146/annurev-marine-120710-100740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., S. F. Gary, and A. S. Bower, 2013: Simulated pathways of the overflow waters in the North Atlantic: Subpolar to subtropical export. Deep-Sea Res. II, 85, 147153, doi:10.1016/j.dsr2.2012.07.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine, version 3.0. IPSL Note du Pôle de modélisation 27, 209 pp.

  • McCarthy, G. D., and et al. , 2015: Measuring the Atlantic Meridional Overturning Circulation at 26°N. Prog. Oceanogr., 130, 91111, doi:10.1016/j.pocean.2014.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., D. R. Watts, and R. A. Clarke, 2000: Absolutely referenced geostrophic velocity and transport on a section across the North Atlantic Current. Deep-Sea Res. I, 47, 309322, doi:10.1016/S0967-0637(99)00061-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mercier, H., and et al. , 2015: Variability of the meridional overturning circulation at the Greenland–Portugal OVIDE section from 1993 to 2010. Prog. Oceanogr., 132, 250261, doi:10.1016/jpocean.2013.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palter, J. B., and M. S. Lozier, 2008: On the source of Gulf Stream nutrients. J. Geophys. Res., 113, C06018, doi:10.1029/2007JC004611.

  • Pérez, F. F., H. Mercier, M. Vázquez-Rodriguez, P. Lherminier, A. Velo, P. Pardo, G. Roson, and A. Rios, 2013: Atlantic Ocean CO2 uptake reduced by weakening of the meridional overturning circulation. Nat. Geosci., 6, 146152, doi:10.1038/ngeo1680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., T. K. McKee, D. J. Torres, and S. A. Harrington, 1999: Mean structure and interannual variability of the slopewater system south of Newfoundland. J. Phys. Oceanogr., 29, 25413132, doi:10.1175/1520-0485(1999)029<2541:MSAIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., F. Straneo, and G. W. K. Moore, 2003: Is Labrador Sea Water formed in the Irminger Basin? Deep-Sea Res. I, 50, 2352, doi:10.1016/S0967-0637(02)00134-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pillar, H., P. Heimbach, H. Johnson, and D. Marshall, 2016: Dynamical attribution of recent variability in Atlantic overturning. J. Climate, 29, 33393352, doi:10.1175/JCLI-D-15-0727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P., S. Häkkinen, and S. A. Josey, 2008: Is oceanic heat transport significant in the climate system? Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, R. R. Dickson, J. Meincke, and P. Rhines, Eds., Springer, 87–109, doi:10.1007/978-1-4020-6774-7_5.

    • Crossref
    • Export Citation
  • Rignot, E., and P. Kanagaratnam, 2006: Changes in the velocity structure of the Greenland Ice Sheet. Science, 311, 986990, doi:10.1126/science.1121381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J. I., R. Sutton, K. Lohmann, and D. Smith, 2012: Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Climate, 25, 41164134, doi:10.1175/JCLI-D-11-00443.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosón, G., A. F. Ríos, F. F. Pérez, A. Lavín, and H. L. Bryden, 2003: Carbon distribution, fluxes, and budgets in the subtropical North Atlantic Ocean (24.5°N). J. Geophys. Res., 108, 3144, doi:10.1029/1999JC000047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and et al. , 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371, doi:10.1126/science.1097403.

  • Schott, F. A., J. Fischer, M. Dengler, and R. Zantopp, 2006: Variability of the Deep Western Boundary Current east of the Grand Banks. Geophys. Res. Lett., 33, L21S07, doi:10.1029/2006GL026563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Send, U., and J. Marshall, 1995: Integral effects of deep convection. J. Phys. Oceanogr., 25, 855872, doi:10.1175/1520-0485(1995)025<0855:IEODC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 15331536, doi:10.1126/science.1139426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, N. J. Dunstone, D. Fereday, J. M. Murphy, H. Pohlmann, and A. A. Scaife, 2010: Skilful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846849, doi:10.1038/ngeo1004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2004: Boundary currents and water mass transformation in marginal seas. J. Phys. Oceanogr., 34, 11971213, doi:10.1175/1520-0485(2004)034<1197:BCAWTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and R. S. Pickart, 2001: Where does dense water sink? A subpolar gyre example. J. Phys. Oceanogr., 31, 810826, doi:10.1175/1520-0485(2001)031<0810:WDDWSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinfeldt, R., M. Rhein, J. L. Bullister, and T. Tanhua, 2009: Inventory changes in anthropogenic carbon from 1997–2003 in the Atlantic Ocean between 20°S and 65°N. Global Biogeochem. Cycles, 23, GB3010, doi:10.1029/2008GB003311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and et al. , 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, doi:10.1175/JCLI3689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stramma, L., D. Kieke, M. Rhein, F. Schott, I. Yashayaev, and K. P. Koltermann, 2004: Deep water changes at the western boundary of the subpolar North Atlantic during 1996 to 2001. Deep-Sea Res. I, 51, 10331056, doi:10.1016/j.dsr.2004.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., 2006: Heat and freshwater transport through the central Labrador Sea. J. Phys. Oceanogr., 36, 606628, doi:10.1175/JPO2875.1.

  • Straneo, F., and P. Heimbach, 2013: North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature, 504, 3643, doi:10.1038/nature12854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., G. S. Hamilton, D. A. Sutherland, L. A. Stearns, F. Davidson, M. O. Hammill, G. B. Stenson, and A. Rosing-Asvid, 2010: Rapid circulation of warm subtropical waters in a major glacial fjord off East Greenland. Nat. Geosci., 3, 182186, doi:10.1038/ngeo764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, doi:10.1126/science.1109496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and et al. , 2009: Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res. II, 56, 554577, doi:10.1016/j.dsr2.2008.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. CLIVAR AMOC Planning Team, 2007: Implementation strategy for a JSOST near-term priority assessing meridional overturning circulation variability: Implications for rapid climate change. U.S. CLIVAR Rep. 2007-2, 23 pp.

  • Visbeck, M., 2007: Oceanography: Power of pull. Nature, 447, 383, doi:10.1038/447383a.

  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34A, 187195, doi:10.1111/j.2153-3490.1982.tb01806.x.

    • Search Google Scholar
    • Export Citation
  • Xu, X., W. J. Schmitz, H. E. Hurlburt, P. J. Hogan, and E. P. Chassignet, 2010: Transport of Nordic Seas overflow water into and within the Irminger Sea: An eddy-resolving simulation and observations. J. Geophys. Res., 115, C12048, doi:10.1029/2010JC006351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., 2007: Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr., 73, 242276, doi:10.1016/j.pocean.2007.04.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., and J. W. Loder, 2009. Enhanced production of Labrador Sea Water in 2008. Geophys. Res. Lett., 36, L01606, doi:10.1029/2008GL036162.

  • Yashayaev, I., and J. W. Loder, 2016: Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability. J. Geophys. Res. Oceans, 121, 80958114, doi:10.1002/2016JC012046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., A. Karspeck, G. Danabasoglu, J. Tribbia, and H. Teng, 2012: A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content. J. Climate, 25, 51735189, doi:10.1175/JCLI-D-11-00595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, S., and M. S. Lozier, 2016: Breaking the linkage between Labrador Sea Water production and its export to the subtropical gyre. J. Phys. Oceanogr., 46, 21692182, doi:10.1175/JPO-D-15-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M. M, and et al. , 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 404 404 48
PDF Downloads 340 340 51

Overturning in the Subpolar North Atlantic Program: A New International Ocean Observing System

View More View Less
  • 1 Duke University, Durham, North Carolina
  • | 2 National Oceanography Centre, Southampton, United Kingdom
  • | 3 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 4 Scottish Association for Marine Science, Oban, United Kingdom
  • | 5 Duke University, Durham, North Carolina, and Royal Netherlands Institute for Sea Research, Texel, and Utrecht University, Utrecht, Netherlands
  • | 6 Royal Netherlands Institute for Sea Research, Texel, and Utrecht University, Utrecht, Netherlands
  • | 7 Memorial University, St. John’s, Newfoundland, Canada
  • | 8 GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
  • | 9 Scottish Association for Marine Science, Oban, United Kingdom
  • | 10 Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
  • | 11 The University of Texas at Austin, Austin, Texas
  • | 12 National Oceanography Centre, Southampton, United Kingdom
  • | 13 Scottish Association for Marine Science, Oban, United Kingdom
  • | 14 University of Miami, Miami, Florida
  • | 15 University of Oxford, Oxford, United Kingdom
  • | 16 GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
  • | 17 Duke University, Durham, North Carolina
  • | 18 Ocean University of China/Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • | 19 National Oceanography Centre, Liverpool, United Kingdom
  • | 20 University of Oxford, Oxford, United Kingdom
  • | 21 CNRS, Laboratory of Ocean Physics and Satellite Oceanography, Ifremer centre de Bretagne, Plouzané, France
  • | 22 University of Alberta, Edmonton, Alberta, Canada
  • | 23 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 24 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
  • | 25 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 26 CNRS, Laboratory of Ocean Physics and Satellite Oceanography, Ifremer centre de Bretagne, Plouzané, France
  • | 27 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 28 University of Liverpool, Liverpool, United Kingdom
  • | 29 National Oceanography Centre, Liverpool, United Kingdom
  • | 30 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 31 Imperial College London, London, United Kingdom
© Get Permissions
Restricted access

Abstract

For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: M. Susan Lozier, mslozier@duke.edu

Abstract

For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: M. Susan Lozier, mslozier@duke.edu
Save