• Bradley, R. S., H. F. Diaz, P. D. Jones, and P. M. Kelly, 1987: Secular fluctuations of temperature over the Northern Hemisphere land areas and mainland China since the mid-19th century. The Climate of China and Global Climate, D. Ye et al., Eds., China Ocean Press, 76–87.

    • Crossref
    • Export Citation
  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, L., P. Zhao, Z. Yan, P. D. Jones, Y. Zhu, Y. Yu, and G. Tang, 2013: Instrumental temperature series in eastern and central China back to the 19th century. J. Geophys. Res. Atmos., 118, 81978207, doi:10.1002/jgrd.50615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L. X., and et al. , 2004: Characteristics of the climate change and its formation mechanism in China in last 80 years. J. Meteor. Res., 62, 634646.

    • Search Google Scholar
    • Export Citation
  • Cheng, X. Y., Y. H. Wang, G. C. Li, and Q. X. Li, 2013: Evaluation of three reanalysis precipitation datasets in China. Adv. Climate Change Res., 9, 258265, doi:10.3969/j.issn.1673-1719.2013.04.004.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and et al. , 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Compo, G. P., P. D. Sardesmukh, J. S. Whitaker, P. Brohan, P. D. Jones, and C. McColl, 2013: Independent confirmation of global land warming without the use of station thermometers. Geophys. Res. Lett., 40, 31703174, doi:10.1002/grl.50425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., and X. S. Dai, 1994: Temperature variation in China during the last 100 years. Meteorology, 20, 1926.

  • Ding, Y. H., and G. Y. Ren, Eds., 2008: Introduction to China’s Climate Change Sciences. China Meteorological Press, 281 pp.

  • Duan, A., and Z. Xiao, 2015: Does the climate warming hiatus exist over the Tibetan Plateau? Sci. Rep., 5, 13 711, doi:10.1038/srep13711.

  • Easterbrook, D. J., 2008: Global cooling is here—Evidence for predicting global cooling for the next three decades. Center for Research on Globalization, Montreal, QC, Canada. [Available online at www.globalresearch.ca/index.php?context=&aid=10783.]

  • Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, doi:10.1029/2009GL037810.

  • Ebisuzaki, W., 1997: A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate, 10, 21472151, doi:10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., N. P. Gillett, and F. W. Zwiers, 2013: Overestimated global warming over the past 20 years. Nat. Climate Change, 3, 767769, doi:10.1038/nclimate1972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guemas, V., F. J. Doblas-Reyes, I. Andreu-Burillo, and M. Asif, 2013: Retrospective prediction of the global warming slowdown in the past decade. Nat. Climate Change, 3, 649653, doi:10.1038/nclimate1863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gullet, D. W., L. Vincent, and P. J. F. Sajecki, 1990: Testing for homogeneity in temperature time series at Canadian climate stations. CCC Rep. 90–4, Atmospheric Environment Service, Downsview, ON, Canada, 43 pp.

  • Guo, Y., W. J. Dong, F. M. Ren, Z. C. Zhao, and J. B. Huang, 2013: Comparison of simulation of China’s annual average air temperature by CMIP5 and CMIP3 models. Adv. Climate Change Res., 9, 181186.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Hartmann, D. L., and et al. , 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Hua, L. J., Z. G. Ma, and W. D. Guo, 2008: The impact of urbanization on air temperature across China. Theor. Appl. Climatol., 93, 179194, doi:10.1007/s00704-007-0339-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, D. B., and Z. P. Tian, 2013: East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models. Chin. Sci. Bull., 58, 14271435, doi:10.1007/s11434-012-5533-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, C., and T. Zhou, 2014: Analysis of the interannual variations of the East Asian winter monsoon simulation by four CMIP5 GCMs. Chin. J. Atmos. Sci., 38, 453468.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., P. Ya. Groisman, M. Coughlan, N. Plummer, W.-C. Wang, and T. R. Karl, 1990: Assessment of urbanization effects in time series of surface air temperature over land. Nature, 347, 169172, doi:10.1038/347169a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., T. J. Osborn, and K. R. Briffa, 1997: Estimating sampling errors in large-scale temperature averages. J. Climate, 10, 25482568, doi:10.1175/1520-0442(1997)010<2548:ESEILS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., D. H. Lister, and Q. Li, 2008: Urbanization effects in large-scale temperature records, with an emphasis on China. J. Geophys. Res., 113, D16122, doi:10.1029/2008JD009916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, 2012: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, doi:10.1029/2011JD017139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and C. N. Williams Jr., 1987: An approach to adjusting climatological times series for discontinuous in homogeneities. J. Climate Appl. Meteor., 26, 17441763, doi:10.1175/1520-0450(1987)026<1744:AATACT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and et al. , 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 14691472, doi:10.1126/science.aaa5632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufmann, R. K., H. Kauppi, M. L. Mann, and J. H. Stock, 2011: Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl. Acad. Sci. USA, 108, 11 79011 793, doi:10.1073/pnas.1102467108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrimore, J. H., M. J. Menne, B. E. Gleason, C. N. Williams, D. B. Wuertz, R. S. Vose, and J. Rennie, 2011: An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res., 116, D19121, doi:10.1029/2011JD016187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewandowsky, S., J. Risbey, and N. Oreskes, 2016: The “pause” in global warming: Turning a routine fluctuation into a problem for science. Bull. Amer. Meteor. Soc., 97, 723733, doi:10.1175/BAMS-D-14-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q. X., X. Liu, H. Zhang, T. C. Peterson, and D. R. Easterling, 2004a: Detecting and adjusting temporal inhomogeneity in Chinese mean surface air temperature data. Adv. Atmos. Sci., 21, 260268, doi:10.1007/BF02915712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q. X., H. Zhang, X. Liu, and J. Huang, 2004b: Urban heat island effect on annual mean temperature during the last 50 years in China. Theor. Appl. Climatol., 79, 165174, doi:10.1007/s00704-004-0065-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q. X., H. Zhang, J. Chen, W. Li, X. Liu, and P. Jones, 2009: A mainland China homogenized historical temperature dataset of 1951–2004. Bull. Amer. Meteor. Soc., 90, 10621065, doi:10.1175/2009BAMS2736.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q. X., W. Dong, W. Li, X. Gao, P. Jones, J. Kennedy, and D. Parker, 2010a: Assessment of the uncertainties in temperature change in China during the last century. Chin. Sci. Bull., 55, 19741982, doi:10.1007/s11434-010-3209-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q. X., W. Li, P. Si, X. Gao, W. Dong, P. Jones, J. Huang, and L. Cao, 2010b: Assessment of surface air warming in northeast China, with emphasis on the impacts of urbanization. Theor. Appl. Climatol., 99, doi:10.1007/s00704-009-0155-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q. X., J. Huang, Z. Jiang, L. Zhou, P. Chu, and K. Hu, 2014: Detection of urbanization signals in extreme winter minimum temperature changes over northern China. Climatic Change, 122, 595608, doi:10.1007/s10584-013-1013-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q. X., S. Yang, W. Xu, X. Wang, P. Jones, D. Parker, L. Zhou, and Y. Feng, 2015: China experiencing the recent warming hiatus. Geophys. Res. Lett., 42, 889898, doi:10.1002/2014GL062773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and Z. Yan, 2009: Homogenized daily mean/maximum/minimum temperature series for China from 1960-2008. Atmos. Ocean. Sci. Lett., 2, 237243, doi:10.1080/16742834.2009.11446802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Met Office, 2013a: The recent pause in global warming (1): What do observations of the climate system tell us? Met Office Rep., 27 pp. [Available online at www.metoffice.gov.uk/media/pdf/q/s/Paper1_Observing_changes_in_the_climate_system.PDF.]

  • Met Office, 2013b: The recent pause in global warming (2): What are potential causes? Met Office Rep., 22 pp. [Available online at www.metoffice.gov.uk/media/pdf/q/0/Paper2_recent_pause_in_global_warming.PDF.]

  • Met Office, 2013c: The recent pause in global warming (3): What are the implications for projections of future warming? Met Office Rep., 19 pp. [Available online at www.gci.org.uk/Documents/Paper3_Implications_for_projections.pdf.]

  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and et al. , 1998: Homogeneity adjustments of in situ atmospheric climate data: A review. Int. J. Climatol., 18, 14931517, doi:10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, D. H., Y. H. Ding, and J. L. Su, Eds., 2005: Evolution of China’s Climate and Environment. Vol. 1, Science Press, 986 pp.

  • Ren, G., Y. Zhou, Z. Chu, J. Zhou, A. Zhang, J. Guo, and X. Liu, 2008: Urbanization effects on observed surface air temperature trends in North China. J. Climate, 21, 13331348, doi:10.1175/2007JCLI1348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, Y., and G. Ren, 2011: A remote-sensing method of selecting reference stations for evaluating urbanization effect on surface air temperature trends. J. Climate, 24, 31793189, doi:10.1175/2010JCLI3658.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., Q. Hu, and W. H. Qian, 2004: Quality control of daily meteorological data in China, 1951–2000: A new dataset. Int. J. Climatol., 24, 853870, doi:10.1002/joc.1047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., and G. Y. Ren, 2005: Reanalysis of surface air temperature change of the last 100 years over China. Climatic Environ. Res., 10, 791798.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffe, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tu, Q. P., 1984: Trend and cycle of China’s air temperature variation in the past century. J. Nanjing Inst. Meteor., 7, 151162.

  • Vose, R. S., and et al. , 2012: NOAA’s merged land–ocean surface temperature analysis. Bull. Amer. Meteor. Soc., 93, 16771685, doi:10.1175/BAMS-D-11-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., Q. Ge, S. Wang, Q. Li, and P. Jones, 2015: A new estimation of urbanization’s contribution to the warming trend in China. J. Climate, 28, 89238938, doi:10.1175/JCLI-D-14-00427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., C. Xu, M. Hu, Q. Li, Z. Yan, P. Zhao, and P. D. Jones, 2014: A new estimate of the China temperature anomaly series and uncertainty assessment in 1900–2006. J. Geophys. Res. Atmos., 119, 19, doi:10.1002/2013JD020542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and D. Gong, 2000: Enhancement of the warming trend in China. Geophys. Res. Lett., 27, 25812584, doi:10.1029/1999GL010825.

  • Wang, S., J. L. Ye, and D. Y. Gong, 1998: Construction of mean annual temperature series for the last one hundred years in China (in Chinese). Quart. J. Appl. Meteor. Sci., 9, 392401.

    • Search Google Scholar
    • Export Citation
  • Xu, W., Q. Li, X. L. Wang, S. Yang, L. Cao, and Y. Feng, 2013: Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices. J. Geophys. Res. Atmos., 118, 97089720, doi:10.1002/jgrd.50791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., and C. H. Xu, 2012: Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models. Atmos. Ocean. Sci. Lett., 5, 489494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Z., Z. Li, Q. X. Li, and P. D. Jones, 2009: Effects of site change and urbanisation in the Beijing temperature series 1977–2006. Int. J. Climatol., 30, 12261234, doi:10.1002/joc.1971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X. C., Y. L. Hou, and B. D. Chen, 2011: Observed surface warming induced by urbanization in east China. J. Geophys. Res., 116, D14113, doi:10.1029/2010JD015452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., Q. Chao, and X. Zou, 2004: Progress in China’s climate change study in the 20th century. J. Geogr. Sci., 14, 311.

  • Zhang, J., W. Dong, L. Wu, J. Wei, P. Chen, and D.-K. Lee, 2005: Impact of land use changes on surface warming in China. Adv. Atmos. Sci., 22, 343348, doi:10.1007/BF02918748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., Y. H. Ding, T. W. Wu, and X. G. Xin, 2013: The 21st century annual mean surface air temperature change and the 2°C warming threshold over the globe and China as projected by the CMIP5 models. J. Meteor. Res., 71, 10471065.

    • Search Google Scholar
    • Export Citation
  • Zhang, X. G., and X. Q. Li, 1982: Some characteristics of temperature variation in China in the present century. J. Meteor. Res., 40, 198208.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. E. Dickinson, Y. Tian, J. Fang, Q. Li, R. K. Kaufmann, C. J. Tucker, and R. B. Myneni, 2004: Evidence for a significant urbanization effect on climate in China. Proc. Natl. Acad. Sci. USA, 101, 95409544, doi:10.1073/pnas.0400357101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., and R. Yu, 2006: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 58435858, doi:10.1175/JCLI3952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 99 97 19
PDF Downloads 60 60 8

Comparisons of Time Series of Annual Mean Surface Air Temperature for China since the 1900s: Observations, Model Simulations, and Extended Reanalysis

View More View Less
  • 1 School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou, China, and National Meteorological Information Center, China Meteorological Administration, Beijing, China
  • | 2 National Meteorological Information Center, China Meteorological Administration, Beijing, China
  • | 3 Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 4 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
  • | 5 China Academy of Meteorological Sciences, Beijing, China
  • | 6 Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom, and Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia
© Get Permissions
Restricted access

Abstract

Time series of global or regional average surface air temperature (SAT) are fundamental to climate change studies. A number of studies have developed several national and regional SAT series for China, but because of the diversity of the meteorological observational sites, the different quality control routines for processing the data, and the inconsistency of the statistical methods used, they differ in their long-term trends. This paper assesses the similarities and differences of the existing time series of the annual average SAT for China that are based upon historical meteorological observations since the 1900s. The results indicate that the China average is similar to the series for the Northern Hemisphere (NH) landmass, except that the initial warming of the NH series derived from the CRUTEM3/4 datasets, which represent global historical land surface air temperatures and near-surface air temperature anomalies over land, respectively, ends earlier (before the early 1940s) than in China’s series. A major difference among the existing China average time series is the 1940s warmth, a period when there were very few observations across the country because of World War II. The SAT anomalies for China during the 1930s to 1940s have been reduced by improved homogeneity assessment compared to previous estimates. The new improved time series is in better agreement with both the historical twentieth-century reanalysis data and the historical climate simulation of phase 5 of the Coupled Model Intercomparison Project (CMIP5) models. The new time series also shows the slowdown of the warming trend during the past 18 yr (1998–2015). The best estimate of a linear trend for increases in temperature with a 95% uncertainty range is 0.121° ± 0.009°C decade–1 for 1900–2015, indicating that the improved homogeneity assessment for China leads to a slightly greater trend than that based on raw data (0.107° ± 0.009°C decade–1).

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: On 28 April 2017, this article was revised to correct the affiliation for Qingxiang Li and the legend in Fig. 6a.

CORRESPONDING AUTHOR E-MAIL: Dr. Qingxiang Li, liqx@cma.gov.cn

A supplement to this article is available online (10.1175/BAMS-D-16-0092.2)

Abstract

Time series of global or regional average surface air temperature (SAT) are fundamental to climate change studies. A number of studies have developed several national and regional SAT series for China, but because of the diversity of the meteorological observational sites, the different quality control routines for processing the data, and the inconsistency of the statistical methods used, they differ in their long-term trends. This paper assesses the similarities and differences of the existing time series of the annual average SAT for China that are based upon historical meteorological observations since the 1900s. The results indicate that the China average is similar to the series for the Northern Hemisphere (NH) landmass, except that the initial warming of the NH series derived from the CRUTEM3/4 datasets, which represent global historical land surface air temperatures and near-surface air temperature anomalies over land, respectively, ends earlier (before the early 1940s) than in China’s series. A major difference among the existing China average time series is the 1940s warmth, a period when there were very few observations across the country because of World War II. The SAT anomalies for China during the 1930s to 1940s have been reduced by improved homogeneity assessment compared to previous estimates. The new improved time series is in better agreement with both the historical twentieth-century reanalysis data and the historical climate simulation of phase 5 of the Coupled Model Intercomparison Project (CMIP5) models. The new time series also shows the slowdown of the warming trend during the past 18 yr (1998–2015). The best estimate of a linear trend for increases in temperature with a 95% uncertainty range is 0.121° ± 0.009°C decade–1 for 1900–2015, indicating that the improved homogeneity assessment for China leads to a slightly greater trend than that based on raw data (0.107° ± 0.009°C decade–1).

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: On 28 April 2017, this article was revised to correct the affiliation for Qingxiang Li and the legend in Fig. 6a.

CORRESPONDING AUTHOR E-MAIL: Dr. Qingxiang Li, liqx@cma.gov.cn

A supplement to this article is available online (10.1175/BAMS-D-16-0092.2)

Supplementary Materials

    • Supplemental Materials (PDF 2.90 MB)
Save