• Baldwin, M. E., and J. S. Kain, 2006: Sensitivity of several performance measures to displacement error, bias, and event frequency. Wea. Forecasting, 21, 636648, doi:10.1175/WAF933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., J. S. Kain, and M. P. Kay, 2002: Properties of the convection scheme in NCEP’s Eta Model that affect forecast sounding interpretation. Wea. Forecasting, 17, 10631079, doi:10.1175/1520-0434(2002)017<1063:POTCSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722, doi:10.1002/qj.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bright, D. R., S. J. Weiss, J. J. Levit, M. S. Wandishin, J. S. Kain, and D. J. Stensrud, 2004: Evaluation of short-range ensemble forecasts during the 2003 SPC/NSSL Spring Program. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P15.5. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_83403.htm.]

  • Brooks, H. E., M. S. Tracton, D. J. Stensrud, G. DiMego, and Z. Toth, 1995: Short-range ensemble forecasting: Report from a workshop (25-27 July 1994). Bull. Amer. Meteor. Soc., 76, 16171624.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and et al. , 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, doi:10.1175/BAMS-D-11-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, P., N. Roberts, H. Lean, S. P. Ballard, and C. Charlton-Perez, 2016: Convection-permitting models: A step-change in rainfall forecasting. Meteor. Appl., 23, 165181, doi:10.1002/met.1538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Correia Jr., P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, doi:10.1175/WAF-D-12-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782, doi:10.1256/qj.04.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., and M. S. Tracton, 2001: Implementation of a real-time short-range ensemble forecasting system at NCEP: An update. Preprints, Ninth Conf. on Mesoscale Processes,Ft. Lauderdale, FL, Amer. Meteor. Soc., 355356.

  • Duda, J. D., and W. A. Gallus Jr., 2010: Spring and summer midwestern severe weather reports in supercells compared to other morphologies. Wea. Forecasting, 25, 190206, doi:10.1175/2009WAF2222338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2009: Neighborhood verification: A strategy for rewarding close forecasts. Wea. Forecasting, 24, 14981510, doi:10.1175/2009WAF2222251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golding, B., N. Roberts, G. Leoncini, K. Mylne, and R. Swinbank, 2016: MOGREPS-UK convection-permitting ensemble products for surface water flood forecasting: Rationale and first results. J. Hydrometeor., 17, 13831406, doi:10.1175/JHM-D-15-0083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., A. I. Barrett, and H. W. Lean, 2016: Simulating the 20 May 2013 Moore, Oklahoma tornado with a 100-metre grid-length NWP model. Atmos. Sci. Lett., 17, 453461, doi:10.1002/asl.678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homar, V., D. J. Stensrud, J. J. Levit, and D. R. Bright, 2006: Value of human-generated perturbations in short-range ensemble forecasts of severe weather. Wea. Forecasting, 21, 347363, doi:10.1175/WAF920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jirak, I. L., S. J. Weiss, and C. J. Melick, 2012: The SPC storm-scale ensemble of opportunity: Overview and results from the 2012 Hazardous Weather Testbed Spring Forecasting Experiment. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., P9.137. [Available online at https://ams.confex.com/ams/26SLS/webprogram/Paper211729.html.]

  • Jirak, I. L., and et al. , 2014: An overview of the 2014 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 46. [Available online at https://ams.confex.com/ams/27SLS/webprogram/Paper254650.html.]

  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, doi:10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., M. E. Baldwin, P. R. Janish, S. J. Weiss, M. P. Kay, and G. W. Carbin, 2003a: Subjective verification of numerical models as a component of a broader interaction between research and operations. Wea. Forecasting, 18, 847860, doi:10.1175/1520-0434(2003)018<0847:SVONMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., P. R. Janish, S. J. Weiss, M. E. Baldwin, R. S. Schneider, and H. E. Brooks, 2003b: Collaboration between forecasters and research scientists at the NSSL and SPC: The Spring Program. Bull. Amer. Meteor. Soc., 84, 17971806, doi:10.1175/BAMS-84-12-1797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. J. Weiss, J. J. Levit, M. E. Baldwin, and D. R. Bright, 2006: Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167181, doi:10.1175/WAF906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and et al. , 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, doi:10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. R. Dembek, S. J. Weiss, J. L. Case, J. J. Levit, and R. A. Sobash, 2010: Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Wea. Forecasting, 25, 15361542, doi:10.1175/2010WAF2222430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstens, C. D., and et al. , 2015: Evaluation of a probabilistic forecasting methodology for severe convective weather in the 2014 Hazardous Weather Testbed. Wea. Forecasting, 30, 15511570, doi:10.1175/WAF-D-14-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., B. Ferrier, M. Stoelinga, E. Szoke, S. J. Weiss, and J. S. Kain, 2005: The use of simulated radar reflectivity fields in the diagnosis of mesoscale phenomena from high-resolution WRF model forecasts. 11th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., J4J.7. [Available online at https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_97032.htm.]

    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, doi:10.1175/2008MWR2332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., C. M. Hayden, R. T. Merrill, and J. M. Schneider, 1989: GUFMEX: A study of return flow in the Gulf of Mexico. Bull. Amer. Meteor. Soc., 70, 2429, doi:10.1175/1520-0477(1989)070<0024:GASORF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., and N. Roberts, 2010: Intercomparison of spatial forecast verification methods: Identifying skillful spatial scales using the fractions skill score. Wea. Forecasting, 25, 343354, doi:10.1175/2009WAF2222260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, D. A., N. W. Junker, and B. Korty, 1995: Evaluation of 33 years of quantitative precipitation forecasting at the NMC. Wea. Forecasting, 10, 498511, doi:10.1175/1520-0434(1995)010<0498:EOYOQP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and et al. , 2013: The emergence of weather-related test beds linking research and forecasting operations. Bull. Amer. Meteor. Soc., 94, 11871211, doi:10.1175/BAMS-D-12-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N., 2005: An investigation of the ability of a storm scale configuration of the Met Office NWP model to predict flood-producing rainfall. Met Office Forecasting Research Tech. Rep. 455, 80 pp. [Available online at www.metoffice.gov.uk/media/pdf/m/g/FRTR455.pdf.]

  • Roberts, N., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E., and et al. , 2009: The NCEP North American Mesoscale modeling system: Recent changes and future plans. 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 2A.4. [Available online at http://ams.confex.com/ams/pdfpapers/154114.pdf.]

  • Schwartz, C. S., and et al. , 2009: Next-day convection-allowing WRF Model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, doi:10.1175/2009MWR2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and et al. , 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, doi:10.1175/2009WAF2222267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, doi:10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and et al. , 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, doi:10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., J. S. Kain, D. R. Bright, A. R. Dean, M. C. Coniglio, and S. J. Weiss, 2011: Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phenomena in convection-allowing model forecasts. Wea. Forecasting, 26, 714728, doi:10.1175/WAF-D-10-05046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, T. H. M., R. J. Hogan, K. E. Hanley, J. C. Nicol, H. W. Lean, R. S. Plant, P. A. Clark, and C. E. Halliwell, 2014: The three-dimensional morphology of simulated and observed convective storms over southern England. Mon. Wea. Rev., 142, 32643283, doi:10.1175/MWR-D-13-00372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2001: Using short-range ensemble forecasts for predicting severe weather events. Atmos. Res., 56, 317, doi:10.1016/S0169-8095(00)00079-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and S. J. Weiss, 2002: Mesoscale model ensemble forecasts of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17, 526543, doi:10.1175/1520-0434(2002)017<0526:MMEFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., H. E. Brooks, J. Du, M. S. Tracton, and E. Rogers, 1999: Using ensembles for short-range forecasting. Mon. Wea. Rev., 127, 433446, doi:10.1175/1520-0493(1999)127<0433:UEFSRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J.-W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensembles of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107, doi:10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y., H. Lean, and J. Bornemann, 2013: The benefits of the Met Office variable resolution NWP model for forecasting convection. Meteor. Appl., 20, 417426, doi:10.1002/met.1300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tracton, S., J. Du, Z. Toth, and H. Juang, 1998: Short-range ensemble forecasting (SREF) at NCEP/EMC. Preprints, 12th Conf. on Numerical Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc., 269272.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and et al. , 2007: CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2007 Spring Experiment. 22th Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 3B.1. [Available online at https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124587.htm.]

  • Zhang, J. K., and et al. , 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, doi:10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 10
PDF Downloads 33 33 8

Collaborative Efforts between the United States and United Kingdom to Advance Prediction of High-Impact Weather

View More View Less
  • 1 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 Met Office, Exeter, United Kingdom
  • | 3 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 4 NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma
  • | 5 Met Office, Exeter, United Kingdom
  • | 6 NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma
  • | 7 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 8 Met Office, Exeter, United Kingdom
  • | 9 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 10 Met Office, Exeter, United Kingdom
  • | 11 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 12 Met Office, Exeter, United Kingdom
  • | 13 Met Office, Exeter, United Kingdom
  • | 14 Met Office, Exeter, United Kingdom
  • | 15 Met Office, Exeter, United Kingdom
  • | 16 Met Office, Exeter, United Kingdom
© Get Permissions
Restricted access

Abstract

In recent years, a growing partnership has emerged between the Met Office and the designated U.S. national centers for expertise in severe weather research and forecasting, that is, the National Oceanic and Atmospheric Administration (NOAA) National Severe Storms Laboratory (NSSL) and the NOAA Storm Prediction Center (SPC). The driving force behind this partnership is a compelling set of mutual interests related to predicting and understanding high-impact weather and using high-resolution numerical weather prediction models as foundational tools to explore these interests.

The forum for this collaborative activity is the NOAA Hazardous Weather Testbed, where annual Spring Forecasting Experiments (SFEs) are conducted by NSSL and SPC. For the last decade, NSSL and SPC have used these experiments to find ways that high-resolution models can help achieve greater success in the prediction of tornadoes, large hail, and damaging winds. Beginning in 2012, the Met Office became a contributing partner in annual SFEs, bringing complementary expertise in the use of convection-allowing models, derived in their case from a parallel decadelong effort to use these models to advance prediction of flash floods associated with heavy thunderstorms.

The collaboration between NSSL, SPC, and the Met Office has been enthusiastic and productive, driven by strong mutual interests at a grassroots level and generous institutional support from the parent government agencies. In this article, a historical background is provided, motivations for collaborative activities are emphasized, and preliminary results are highlighted.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: John S. Kain, jack.kain@noaa.gov

Abstract

In recent years, a growing partnership has emerged between the Met Office and the designated U.S. national centers for expertise in severe weather research and forecasting, that is, the National Oceanic and Atmospheric Administration (NOAA) National Severe Storms Laboratory (NSSL) and the NOAA Storm Prediction Center (SPC). The driving force behind this partnership is a compelling set of mutual interests related to predicting and understanding high-impact weather and using high-resolution numerical weather prediction models as foundational tools to explore these interests.

The forum for this collaborative activity is the NOAA Hazardous Weather Testbed, where annual Spring Forecasting Experiments (SFEs) are conducted by NSSL and SPC. For the last decade, NSSL and SPC have used these experiments to find ways that high-resolution models can help achieve greater success in the prediction of tornadoes, large hail, and damaging winds. Beginning in 2012, the Met Office became a contributing partner in annual SFEs, bringing complementary expertise in the use of convection-allowing models, derived in their case from a parallel decadelong effort to use these models to advance prediction of flash floods associated with heavy thunderstorms.

The collaboration between NSSL, SPC, and the Met Office has been enthusiastic and productive, driven by strong mutual interests at a grassroots level and generous institutional support from the parent government agencies. In this article, a historical background is provided, motivations for collaborative activities are emphasized, and preliminary results are highlighted.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: John S. Kain, jack.kain@noaa.gov
Save