The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

S. T. Martin Harvard University, Cambridge, Massachusetts

Search for other papers by S. T. Martin in
Current site
Google Scholar
PubMed
Close
,
P. Artaxo University of São Paulo, São Paulo, Brazil

Search for other papers by P. Artaxo in
Current site
Google Scholar
PubMed
Close
,
L. Machado National Institute for Space Research, São José dos Campos, Brazil

Search for other papers by L. Machado in
Current site
Google Scholar
PubMed
Close
,
A. O. Manzi National Institute of Amazonian Research, Manaus, Amazonas, Brazil

Search for other papers by A. O. Manzi in
Current site
Google Scholar
PubMed
Close
,
R. A. F. Souza Amazonas State University, Amazonas, Brazil

Search for other papers by R. A. F. Souza in
Current site
Google Scholar
PubMed
Close
,
C. Schumacher Texas A&M University, College Station, Texas

Search for other papers by C. Schumacher in
Current site
Google Scholar
PubMed
Close
,
J. Wang Brookhaven National Laboratory, Upton, New York

Search for other papers by J. Wang in
Current site
Google Scholar
PubMed
Close
,
T. Biscaro National Institute for Space Research, São José dos Campos, Brazil

Search for other papers by T. Biscaro in
Current site
Google Scholar
PubMed
Close
,
J. Brito University of São Paulo, São Paulo, Brazil

Search for other papers by J. Brito in
Current site
Google Scholar
PubMed
Close
,
A. Calheiros National Institute for Space Research, São José dos Campos, Brazil

Search for other papers by A. Calheiros in
Current site
Google Scholar
PubMed
Close
,
K. Jardine Lawrence Berkeley National Lab, Berkeley, California

Search for other papers by K. Jardine in
Current site
Google Scholar
PubMed
Close
,
A. Medeiros Amazonas State University, Amazonas, Brazil

Search for other papers by A. Medeiros in
Current site
Google Scholar
PubMed
Close
,
B. Portela National Institute of Amazonian Research, Manaus, Amazonas, Brazil

Search for other papers by B. Portela in
Current site
Google Scholar
PubMed
Close
,
S. S. de Sá Harvard University, Cambridge, Massachusetts

Search for other papers by S. S. de Sá in
Current site
Google Scholar
PubMed
Close
,
K. Adachi Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by K. Adachi in
Current site
Google Scholar
PubMed
Close
,
A. C. Aiken Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by A. C. Aiken in
Current site
Google Scholar
PubMed
Close
,
R. Albrecht University of São Paulo, São Paulo, Brazil

Search for other papers by R. Albrecht in
Current site
Google Scholar
PubMed
Close
,
L. Alexander Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by L. Alexander in
Current site
Google Scholar
PubMed
Close
,
M. O. Andreae Max Planck Institute for Chemistry, Mainz, Germany

Search for other papers by M. O. Andreae in
Current site
Google Scholar
PubMed
Close
,
H. M. J. Barbosa University of São Paulo, São Paulo, Brazil

Search for other papers by H. M. J. Barbosa in
Current site
Google Scholar
PubMed
Close
,
P. Buseck Arizona State University, Tempe, Arizona

Search for other papers by P. Buseck in
Current site
Google Scholar
PubMed
Close
,
D. Chand Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by D. Chand in
Current site
Google Scholar
PubMed
Close
,
J. M. Comstock Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by J. M. Comstock in
Current site
Google Scholar
PubMed
Close
,
D. A. Day University of Colorado Boulder, Boulder, Colorado

Search for other papers by D. A. Day in
Current site
Google Scholar
PubMed
Close
,
M. Dubey Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by M. Dubey in
Current site
Google Scholar
PubMed
Close
,
J. Fan Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by J. Fan in
Current site
Google Scholar
PubMed
Close
,
J. Fast Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by J. Fast in
Current site
Google Scholar
PubMed
Close
,
G. Fisch Aeronautic and Space Institute, São José dos Campos, Brazil

Search for other papers by G. Fisch in
Current site
Google Scholar
PubMed
Close
,
E. Fortner Aerodyne, Inc., Billerica, Massachusetts

Search for other papers by E. Fortner in
Current site
Google Scholar
PubMed
Close
,
S. Giangrande Brookhaven National Laboratory, Upton, New York

Search for other papers by S. Giangrande in
Current site
Google Scholar
PubMed
Close
,
M. Gilles Lawrence Berkeley National Lab, Berkeley, California

Search for other papers by M. Gilles in
Current site
Google Scholar
PubMed
Close
,
A. H. Goldstein University of California, Berkeley, Berkeley, California

Search for other papers by A. H. Goldstein in
Current site
Google Scholar
PubMed
Close
,
A. Guenther University of California, Irvine, Irvine, California

Search for other papers by A. Guenther in
Current site
Google Scholar
PubMed
Close
,
J. Hubbe Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by J. Hubbe in
Current site
Google Scholar
PubMed
Close
,
M. Jensen Brookhaven National Laboratory, Upton, New York

Search for other papers by M. Jensen in
Current site
Google Scholar
PubMed
Close
,
J. L. Jimenez University of Colorado Boulder, Boulder, Colorado

Search for other papers by J. L. Jimenez in
Current site
Google Scholar
PubMed
Close
,
F. N. Keutsch Harvard University, Cambridge, Massachusetts

Search for other papers by F. N. Keutsch in
Current site
Google Scholar
PubMed
Close
,
S. Kim University of California, Irvine, Irvine, California

Search for other papers by S. Kim in
Current site
Google Scholar
PubMed
Close
,
C. Kuang Brookhaven National Laboratory, Upton, New York

Search for other papers by C. Kuang in
Current site
Google Scholar
PubMed
Close
,
A. Laskin Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by A. Laskin in
Current site
Google Scholar
PubMed
Close
,
K. McKinney Harvard University, Cambridge, Massachusetts

Search for other papers by K. McKinney in
Current site
Google Scholar
PubMed
Close
,
F. Mei Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by F. Mei in
Current site
Google Scholar
PubMed
Close
,
M. Miller Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by M. Miller in
Current site
Google Scholar
PubMed
Close
,
R. Nascimento Amazonas State University, Amazonas, Brazil

Search for other papers by R. Nascimento in
Current site
Google Scholar
PubMed
Close
,
T. Pauliquevis Federal University of São Paulo, São Paulo, Brazil

Search for other papers by T. Pauliquevis in
Current site
Google Scholar
PubMed
Close
,
M. Pekour Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by M. Pekour in
Current site
Google Scholar
PubMed
Close
,
J. Peres University of São Paulo, São Paulo, Brazil

Search for other papers by J. Peres in
Current site
Google Scholar
PubMed
Close
,
T. Petäjä University of Helsinki, Helsinki, Finland

Search for other papers by T. Petäjä in
Current site
Google Scholar
PubMed
Close
,
C. Pöhlker Max Planck Institute for Chemistry, Mainz, Germany

Search for other papers by C. Pöhlker in
Current site
Google Scholar
PubMed
Close
,
U. Pöschl Max Planck Institute for Chemistry, Mainz, Germany

Search for other papers by U. Pöschl in
Current site
Google Scholar
PubMed
Close
,
L. Rizzo Federal University of São Paulo, São Paulo, Brazil

Search for other papers by L. Rizzo in
Current site
Google Scholar
PubMed
Close
,
B. Schmid Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by B. Schmid in
Current site
Google Scholar
PubMed
Close
,
J. E. Shilling Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by J. E. Shilling in
Current site
Google Scholar
PubMed
Close
,
M. A. Silva Dias University of São Paulo, São Paulo, Brazil

Search for other papers by M. A. Silva Dias in
Current site
Google Scholar
PubMed
Close
,
J. N. Smith University of California, Irvine, Irvine, California

Search for other papers by J. N. Smith in
Current site
Google Scholar
PubMed
Close
,
J. M. Tomlinson Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by J. M. Tomlinson in
Current site
Google Scholar
PubMed
Close
,
J. Tóta Federal University of West Para, Santarém, Pará, Brazil

Search for other papers by J. Tóta in
Current site
Google Scholar
PubMed
Close
, and
M. Wendisch University of Leipzig, Leipzig, Germany

Search for other papers by M. Wendisch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraft to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: S. T. Martin, scot_martin@harvard.edu

A supplement to this article is available online (10.1175/BAMS-D-15-00221.2).

Abstract

The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraft to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: S. T. Martin, scot_martin@harvard.edu

A supplement to this article is available online (10.1175/BAMS-D-15-00221.2).

Supplementary Materials

    • Supplemental Materials (PDF 1.17 MB)
Save
  • Andreae, M. O., 2007: Aerosols before pollution. Science, 315, 5051, doi:10.1126/science.1136529.

  • Andreae, M. O., and D. Rosenfeld, 2008: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci. Rev., 89, 1341, doi:10.1016/j.earscirev.2008.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, doi:10.1126/science.1092779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and Coauthors, 2012: Carbon monoxide and related trace gases and aerosols over the Amazon basin during the wet and dry seasons. Atmos. Chem. Phys., 12, 60416065, doi:10.5194/acp-12-6041-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and Coauthors, 2015: The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmos. Chem. Phys., 15, 10 72310 776, doi:10.5194/acp-15-10723-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Artaxo, P., and Coauthors, 2002: Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. J. Geophys. Res., 107, 114, doi:10.1029/2001JD000666.

    • Search Google Scholar
    • Export Citation
  • Artaxo, P., and Coauthors, 2013: Atmospheric aerosols in Amazonia and land use change: From natural biogenic to biomass burning conditions. Faraday Discuss., 165, 203235, doi:10.1039/c3fd00052d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, R., 1990: Gas-phase tropospheric chemistry of organic compounds: A review. Atmos. Environ., 24, 141, doi:10.1016/0960-1686(90)90438-S.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, R., and J. Arey, 2003: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ., 37, 197219, doi:10.1016/S1352-2310(03)00391-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bateman, A. P., and Coauthors, 2016: Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest. Nat. Geosci., 9, 3437, doi:10.1038/ngeo2599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecchini, M. A., and Coauthors, 2016: Impacts of the Manaus pollution plume on the microphysical properties of Amazonian warm-phase clouds in the wet season. Atmos. Chem. Phys., 16, 70297041, doi:10.5194/acp-16-7029-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chameides, W., R. Lindsay, J. Richardson, and C. Kiang, 1988: The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science, 241, 14731475, doi:10.1126/science.3420404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, E. A., and Coauthors, 2012: The Amazon basin in transition. Nature, 481, 321328, doi:10.1038/nature10717.

  • Fan, J., D. Rosenfeld, Y. Ding, L. R. Leung, and Z. Li, 2012: Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geophys. Res. Lett., 39, L09806, doi:10.1029/2012GL051851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D. K., A. Matsunaga, K. S. Docherty, J. D. Surratt, J. H. Seinfeld, P. J. Ziemann, and J. L. Jimenez, 2010: Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. Proc. Natl. Acad., 107, 66706675, doi:10.1073/pnas.0912340107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, S. R., and Coauthors, 2009: The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS)—Part 1: Model description and evaluation. Atmos. Chem. Phys., 9, 28432861, doi:10.5194/acp-9-2843-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garstang, M., and Coauthors, 1990: The Amazon Boundary-Layer Experiment (ABLE 2B): A meteorological perspective. Bull. Amer. Meteor. Soc., 71, 1932, doi:10.1175/1520-0477(1990)071<0019:TABLEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonçalves, W. A., L. A. T. Machado, and P. E. Kirstetter, 2015: Influence of biomass aerosol on precipitation over the central Amazon: An observational study. Atmos. Chem. Phys., 15, 67896800, doi:10.5194/acp-15-6789-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grandin, G., 2009: Fordlandia: The Rise and Fall of Henry Ford’s Forgotten Jungle City. Metropolitan Books, 416 pp.

  • Isaacman-VanWertz, G., and Coauthors, 2016: Environ. Sci. Technol., 50, 99529962, doi:10.1021/acs.est.6b01674.

  • Jacobson, M. Z., 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695697, doi:10.1038/35055518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, M., M. Bustamante, J. Gash, and P. Dias, Eds., 2009: Amazonia and Global Change. Geophys. Monogr., Vol. 186, Amer. Geophys. Union, 565 pp.

    • Crossref
    • Export Citation
  • Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, doi:10.1256/qj.04.62.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhn, U., and Coauthors, 2010: Impact of Manaus city on the Amazon Green Ocean atmosphere: Ozone production, precursor sensitivity and aerosol load. Atmos. Chem. Phys., 10, 92519282, doi:10.5194/acp-10-9251-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. J., I. Herdlinger-Blatt, K. A. McKinney, and S. T. Martin, 2013: Production of methyl vinyl ketone and methacrolein via the hydroperoxyl pathway of isoprene oxidation. Atmos. Chem. Phys., 13, 57155730, doi:10.5194/acp-13-5715-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. J., and Coauthors, 2016: Isoprene photochemistry over the Amazon rainforest. Proc. Natl. Acad. Sci. USA, 13, 61256130, doi:10.1073/pnas.1524136113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and Coauthors, 2014: The Chuva project: How does convection vary across Brazil? Bull. Amer. Meteor. Soc., 95, 13651380, doi:10.1175/BAMS-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mares, M. A., 1986: Conservation in South America: Problems, consequences, and solutions. Science, 233, 734739, doi:10.1126/science.233.4765.734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S. T., and Coauthors, 2010a: Sources and properties of Amazonian aerosol particles. Rev. Geophys., 48, RG2002, doi:10.1029/2008RG000280.

  • Martin, S. T., and Coauthors, 2010b: An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08). Atmos. Chem. Phys., 10, 11 41511 438, doi:10.5194/acp-10-11415-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S. T., and Coauthors, 2016: Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmos. Chem. Phys., 16, 47854797, doi:10.5194/acp-16-4785-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, doi:10.1175/BAMS-D-11-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., V. N. Bringi, and M. Thurai, 2011: Do we observe aerosol impacts on DSDs in strongly forced tropical thunderstorms? J. Atmos. Sci., 68, 19021910, doi:10.1175/2011JAS3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perring, A. E., S. E. Pusede, and R. C. Cohen, 2013: An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol. Chem. Rev., 113, 58485870, doi:10.1021/cr300520x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poschl, U., and Coauthors, 2010: Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science, 329, 15131516, doi:10.1126/science.1191056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 2005: Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart. J. Roy. Meteor. Soc., 131, 639673, doi:10.1256/qj.04.13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reutter, P., and Coauthors, 2009: Aerosol- and updraft-limited regimes of cloud droplet formation: Influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys., 9, 70677080, doi:10.5194/acp-9-7067-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roosevelt, T., 1914: Through the Brazilian Wilderness. Charles Scribner’s Sons, 383 pp.

    • Crossref
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, doi:10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salati, E., and P. B. Vose, 1984: Amazon basin: A system in equilibrium. Science, 225, 129138, doi:10.1126/science.225.4658.129.

  • Schmid, B., and Coauthors, 2014: The DOE ARM aerial facility. Bull. Amer. Meteor. Soc., 95, 723742, doi:10.1175/BAMS-D-13-00040.1.

  • Silva Dias, P. L., D. S. Moreira, and G. D. Neto, 2006: The Master Super Model Ensemble System (MSMES). Eighth Int. Conf. on Southern Hemisphere Meteorology and Oceanography, Foz do Iguaçu, Brazil, Amer. Meteor. Soc., 1751–1757.

  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 12011221, doi:10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ter Steege, H., and Coauthors, 2013: Hyperdominance in the Amazonian tree flora. Science, 342, doi:10.1126/science.1243092.

  • Trebs, I., and Coauthors, 2012: Impact of the Manaus urban plume on trace gas mixing ratios near the surface in the Amazon basin: Implications for the NO-NO2-O3 photostationary state and peroxy radical levels. J. Geophys. Res., 117, D05307, doi:10.1029/2011JD016386.

    • Search Google Scholar
    • Export Citation
  • Unger, N., 2012: Global climate forcing by criteria air pollutants. Annu. Rev. Environ. Resour., 37, 124, doi:10.1146/annurev-environ-082310-100824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valin, L. C., A. R. Russell, and R. C. Cohen, 2013: Variations of OH radical in an urban plume inferred from NO2 column measurements. Geophys. Res. Lett., 40, 18561860, doi:10.1002/grl.50267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and Coauthors, 2016: The ACRIDICON–CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO. Bull. Amer. Meteor. Soc., 97, 18851908, doi:10.1175/BAMS-D-14-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, doi:10.1029/2001JD000380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 7 0 0
Full Text Views 2979 890 84
PDF Downloads 1737 426 49