• Andreae, M. O., 2007: Aerosols before pollution. Science, 315, 5051, doi:10.1126/science.1136529.

  • Andreae, M. O., and D. Rosenfeld, 2008: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci. Rev., 89, 1341, doi:10.1016/j.earscirev.2008.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, doi:10.1126/science.1092779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and et al. , 2012: Carbon monoxide and related trace gases and aerosols over the Amazon basin during the wet and dry seasons. Atmos. Chem. Phys., 12, 60416065, doi:10.5194/acp-12-6041-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and et al. , 2015: The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmos. Chem. Phys., 15, 10 72310 776, doi:10.5194/acp-15-10723-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Artaxo, P., and et al. , 2002: Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. J. Geophys. Res., 107, 114, doi:10.1029/2001JD000666.

    • Search Google Scholar
    • Export Citation
  • Artaxo, P., and et al. , 2013: Atmospheric aerosols in Amazonia and land use change: From natural biogenic to biomass burning conditions. Faraday Discuss., 165, 203235, doi:10.1039/c3fd00052d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, R., 1990: Gas-phase tropospheric chemistry of organic compounds: A review. Atmos. Environ., 24, 141, doi:10.1016/0960-1686(90)90438-S.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, R., and J. Arey, 2003: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ., 37, 197219, doi:10.1016/S1352-2310(03)00391-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bateman, A. P., and et al. , 2016: Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest. Nat. Geosci., 9, 3437, doi:10.1038/ngeo2599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecchini, M. A., and et al. , 2016: Impacts of the Manaus pollution plume on the microphysical properties of Amazonian warm-phase clouds in the wet season. Atmos. Chem. Phys., 16, 70297041, doi:10.5194/acp-16-7029-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chameides, W., R. Lindsay, J. Richardson, and C. Kiang, 1988: The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science, 241, 14731475, doi:10.1126/science.3420404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, E. A., and et al. , 2012: The Amazon basin in transition. Nature, 481, 321328, doi:10.1038/nature10717.

  • Fan, J., D. Rosenfeld, Y. Ding, L. R. Leung, and Z. Li, 2012: Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geophys. Res. Lett., 39, L09806, doi:10.1029/2012GL051851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D. K., A. Matsunaga, K. S. Docherty, J. D. Surratt, J. H. Seinfeld, P. J. Ziemann, and J. L. Jimenez, 2010: Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. Proc. Natl. Acad., 107, 66706675, doi:10.1073/pnas.0912340107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, S. R., and et al. , 2009: The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS)—Part 1: Model description and evaluation. Atmos. Chem. Phys., 9, 28432861, doi:10.5194/acp-9-2843-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garstang, M., and et al. , 1990: The Amazon Boundary-Layer Experiment (ABLE 2B): A meteorological perspective. Bull. Amer. Meteor. Soc., 71, 1932, doi:10.1175/1520-0477(1990)071<0019:TABLEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonçalves, W. A., L. A. T. Machado, and P. E. Kirstetter, 2015: Influence of biomass aerosol on precipitation over the central Amazon: An observational study. Atmos. Chem. Phys., 15, 67896800, doi:10.5194/acp-15-6789-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grandin, G., 2009: Fordlandia: The Rise and Fall of Henry Ford’s Forgotten Jungle City. Metropolitan Books, 416 pp.

  • Isaacman-VanWertz, G., and et al. , 2016: Environ. Sci. Technol., 50, 99529962, doi:10.1021/acs.est.6b01674.

  • Jacobson, M. Z., 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695697, doi:10.1038/35055518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, M., M. Bustamante, J. Gash, and P. Dias, Eds., 2009: Amazonia and Global Change. Geophys. Monogr., Vol. 186, Amer. Geophys. Union, 565 pp.

    • Crossref
    • Export Citation
  • Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, doi:10.1256/qj.04.62.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhn, U., and et al. , 2010: Impact of Manaus city on the Amazon Green Ocean atmosphere: Ozone production, precursor sensitivity and aerosol load. Atmos. Chem. Phys., 10, 92519282, doi:10.5194/acp-10-9251-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. J., I. Herdlinger-Blatt, K. A. McKinney, and S. T. Martin, 2013: Production of methyl vinyl ketone and methacrolein via the hydroperoxyl pathway of isoprene oxidation. Atmos. Chem. Phys., 13, 57155730, doi:10.5194/acp-13-5715-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. J., and et al. , 2016: Isoprene photochemistry over the Amazon rainforest. Proc. Natl. Acad. Sci. USA, 13, 61256130, doi:10.1073/pnas.1524136113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and et al. , 2014: The Chuva project: How does convection vary across Brazil? Bull. Amer. Meteor. Soc., 95, 13651380, doi:10.1175/BAMS-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mares, M. A., 1986: Conservation in South America: Problems, consequences, and solutions. Science, 233, 734739, doi:10.1126/science.233.4765.734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S. T., and et al. , 2010a: Sources and properties of Amazonian aerosol particles. Rev. Geophys., 48, RG2002, doi:10.1029/2008RG000280.

  • Martin, S. T., and et al. , 2010b: An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08). Atmos. Chem. Phys., 10, 11 41511 438, doi:10.5194/acp-10-11415-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S. T., and et al. , 2016: Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmos. Chem. Phys., 16, 47854797, doi:10.5194/acp-16-4785-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, doi:10.1175/BAMS-D-11-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., V. N. Bringi, and M. Thurai, 2011: Do we observe aerosol impacts on DSDs in strongly forced tropical thunderstorms? J. Atmos. Sci., 68, 19021910, doi:10.1175/2011JAS3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perring, A. E., S. E. Pusede, and R. C. Cohen, 2013: An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol. Chem. Rev., 113, 58485870, doi:10.1021/cr300520x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poschl, U., and et al. , 2010: Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science, 329, 15131516, doi:10.1126/science.1191056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 2005: Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart. J. Roy. Meteor. Soc., 131, 639673, doi:10.1256/qj.04.13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reutter, P., and et al. , 2009: Aerosol- and updraft-limited regimes of cloud droplet formation: Influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys., 9, 70677080, doi:10.5194/acp-9-7067-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roosevelt, T., 1914: Through the Brazilian Wilderness. Charles Scribner’s Sons, 383 pp.

    • Crossref
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, doi:10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salati, E., and P. B. Vose, 1984: Amazon basin: A system in equilibrium. Science, 225, 129138, doi:10.1126/science.225.4658.129.

  • Schmid, B., and et al. , 2014: The DOE ARM aerial facility. Bull. Amer. Meteor. Soc., 95, 723742, doi:10.1175/BAMS-D-13-00040.1.

  • Silva Dias, P. L., D. S. Moreira, and G. D. Neto, 2006: The Master Super Model Ensemble System (MSMES). Eighth Int. Conf. on Southern Hemisphere Meteorology and Oceanography, Foz do Iguaçu, Brazil, Amer. Meteor. Soc., 1751–1757.

  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 12011221, doi:10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ter Steege, H., and et al. , 2013: Hyperdominance in the Amazonian tree flora. Science, 342, doi:10.1126/science.1243092.

  • Trebs, I., and et al. , 2012: Impact of the Manaus urban plume on trace gas mixing ratios near the surface in the Amazon basin: Implications for the NO-NO2-O3 photostationary state and peroxy radical levels. J. Geophys. Res., 117, D05307, doi:10.1029/2011JD016386.

    • Search Google Scholar
    • Export Citation
  • Unger, N., 2012: Global climate forcing by criteria air pollutants. Annu. Rev. Environ. Resour., 37, 124, doi:10.1146/annurev-environ-082310-100824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valin, L. C., A. R. Russell, and R. C. Cohen, 2013: Variations of OH radical in an urban plume inferred from NO2 column measurements. Geophys. Res. Lett., 40, 18561860, doi:10.1002/grl.50267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and et al. , 2016: The ACRIDICON–CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO. Bull. Amer. Meteor. Soc., 97, 18851908, doi:10.1175/BAMS-D-14-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E., and et al. , 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, doi:10.1029/2001JD000380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 437 437 84
PDF Downloads 339 339 45

The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

View More View Less
  • 1 Harvard University, Cambridge, Massachusetts
  • | 2 University of São Paulo, São Paulo, Brazil
  • | 3 National Institute for Space Research, São José dos Campos, Brazil
  • | 4 National Institute of Amazonian Research, Manaus, Amazonas, Brazil
  • | 5 Amazonas State University, Amazonas, Brazil
  • | 6 Texas A&M University, College Station, Texas
  • | 7 Brookhaven National Laboratory, Upton, New York
  • | 8 National Institute for Space Research, São José dos Campos, Brazil
  • | 9 University of São Paulo, São Paulo, Brazil
  • | 10 National Institute for Space Research, São José dos Campos, Brazil
  • | 11 Lawrence Berkeley National Lab, Berkeley, California
  • | 12 Amazonas State University, Amazonas, Brazil
  • | 13 National Institute of Amazonian Research, Manaus, Amazonas, Brazil
  • | 14 Harvard University, Cambridge, Massachusetts
  • | 15 Meteorological Research Institute, Tsukuba, Ibaraki, Japan
  • | 16 Los Alamos National Laboratory, Los Alamos, New Mexico
  • | 17 University of São Paulo, São Paulo, Brazil
  • | 18 Pacific Northwest National Laboratory, Richland, Washington
  • | 19 Max Planck Institute for Chemistry, Mainz, Germany
  • | 20 University of São Paulo, São Paulo, Brazil
  • | 21 Arizona State University, Tempe, Arizona
  • | 22 Pacific Northwest National Laboratory, Richland, Washington
  • | 23 University of Colorado Boulder, Boulder, Colorado
  • | 24 Los Alamos National Laboratory, Los Alamos, New Mexico
  • | 25 Pacific Northwest National Laboratory, Richland, Washington
  • | 26 Aeronautic and Space Institute, São José dos Campos, Brazil
  • | 27 Aerodyne, Inc., Billerica, Massachusetts
  • | 28 Brookhaven National Laboratory, Upton, New York
  • | 29 Lawrence Berkeley National Lab, Berkeley, California
  • | 30 University of California, Berkeley, Berkeley, California
  • | 31 University of California, Irvine, Irvine, California
  • | 32 Pacific Northwest National Laboratory, Richland, Washington
  • | 33 Brookhaven National Laboratory, Upton, New York
  • | 34 University of Colorado Boulder, Boulder, Colorado
  • | 35 Harvard University, Cambridge, Massachusetts
  • | 36 University of California, Irvine, Irvine, California
  • | 37 Brookhaven National Laboratory, Upton, New York
  • | 38 Pacific Northwest National Laboratory, Richland, Washington
  • | 39 Harvard University, Cambridge, Massachusetts
  • | 40 Pacific Northwest National Laboratory, Richland, Washington
  • | 41 Rutgers, The State University of New Jersey, New Brunswick, New Jersey
  • | 42 Amazonas State University, Amazonas, Brazil
  • | 43 Federal University of São Paulo, São Paulo, Brazil
  • | 44 Pacific Northwest National Laboratory, Richland, Washington
  • | 45 University of São Paulo, São Paulo, Brazil
  • | 46 University of Helsinki, Helsinki, Finland
  • | 47 Max Planck Institute for Chemistry, Mainz, Germany
  • | 48 Federal University of São Paulo, São Paulo, Brazil
  • | 49 Pacific Northwest National Laboratory, Richland, Washington
  • | 50 University of São Paulo, São Paulo, Brazil
  • | 51 University of California, Irvine, Irvine, California
  • | 52 Pacific Northwest National Laboratory, Richland, Washington
  • | 53 Federal University of West Para, Santarém, Pará, Brazil
  • | 54 University of Leipzig, Leipzig, Germany
© Get Permissions
Restricted access

Abstract

The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraft to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: S. T. Martin, scot_martin@harvard.edu

A supplement to this article is available online (10.1175/BAMS-D-15-00221.2).

Abstract

The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraft to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: S. T. Martin, scot_martin@harvard.edu

A supplement to this article is available online (10.1175/BAMS-D-15-00221.2).

Supplementary Materials

    • Supplemental Materials (PDF 1.17 MB)
Save