• Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar-Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Chen, D. H., and et al. , 2008: New generation of multiscale NWP system (GRAPES): General scientific design. Chin. Sci. Bull., 53, 34333445, doi:10.1007/s11434-008-0494-z.

    • Search Google Scholar
    • Export Citation
  • Chen, G. T.-J., and C.-C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the mei-yu season. Mon. Wea. Rev., 116, 884891, doi:10.1175/1520-0493(1988)116<0884:SOLLJA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 90359044, doi:10.1029/98JD00153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., 1994: Monsoons over China. Kluwer Academic Publishers, 419 pp.

  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flashflood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, S. S., 1986: Heavy rainfall over Southern China in the Pre-Summer Rainy Season (in Chinese). Guangdong Science and Technology Press, 244 pp.

  • Jou, B. J.-D., W.-C. Lee, and R. H. Johnson, 2011: An overview of SoWMEX/TiMREX and its operation. The Global Monsoon System: Research and Forecast, 2nd ed. C.-P. Chang, Ed., World Scientific, 303–318.

    • Crossref
    • Export Citation
  • Jung, Y., G. Zhang, and M. Xue, 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 22282245, doi:10.1175/2007MWR2083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139, 10131035, doi:10.1175/2010MWR3293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., J. Zheng, Z. Ruan, Z. Cui, Z. Hu, S. Wu, G. Dai, and Y. Wu, 2015: Comprehensive radar observations of clouds and precipitation over the Tibetan Plateau and preliminary analysis of cloud properties. J. Meteor. Res., 29, 546561, doi:10.1007/s13351-015-4208-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., 2017: Advances in understanding the early-summer heavy rainfall over south China. The Global Monsoon System: Research and Forecast, 3rd ed. C. P. Chang et al., Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 9, World Scientific, 215–226.

    • Crossref
    • Export Citation
  • Luo, Y., H. Wang, R. Zhang, W. Qian, and Z. Luo, 2013: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over south China and the Yangtze and Huai River basin. J. Climate, 26, 110132, doi:10.1175/JCLI-D-12-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., Y. Gong, and D.-L. Zhang, 2014: Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a mei-yu front in east China. Mon. Wea. Rev., 142, 203221, doi:10.1175/MWR-D-13-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, doi:10.1175/1520-0477-60.2.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., and N. Roberts, 2010: Intercomparison of spatial forecast verification methods: Identifying skillful spatial scales using the fractions skill score. Wea. Forecasting, 25, 343354, doi:10.1175/2009WAF2222260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, doi:10.1175/JAS-D-14-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and et al. , 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., 2008: Assessing the spatial and temporal variation in the skill of precipitation forecasts from an NWP model. Meteor. Appl., 15, 163169, doi:10.1002/met.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schönhuber, M., G. Lammer, and W. Randeu, 2007: One decade of imaging precipitation measurement by 2D-video-distrometer. Adv. Geosci., 10, 8590, doi:10.5194/adgeo-10-85-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2008: Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev., 136, 39643986, doi:10.1175/2008MWR2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Tao, W.-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231235, doi:10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., Y. Luo, and B. Jou, 2014: Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J. Geophys. Res. Atmos., 119, 13 20613 232, doi:10.1002/2014JD022339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., and Y. Luo, 2016: Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015. J. Meteor. Res., 30, 719736, doi:10.1007/s13351-016-6089-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, R., D.-L. Zhang, and B. Wang, 2015: A 6-yr cloud-to-ground lightning climatology and its relationship to rainfall over central and eastern china. J. Appl. Meteor. Climatol., 54, 24432460, doi:10.1175/JAMC-D-15-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, J. S., S. Y. Zhuang, G. F. Zhu, H. Zhang, Z. Liu, Y. Liu, and Z. Zhuang, 2008: Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES. Chin. Sci. Bull., 53, 34463457, doi:10.1007/s11434-008-0416-0.

    • Search Google Scholar
    • Export Citation
  • Yin, J., 2013: The study on observation and parameterization of cloud-precipitation microphysical properties over East Asia (in Chinese). Ph.D. thesis, Zhejiang University, 163 pp.

  • Zhang, R. H., and X. S. Shen, 2008: On the development of the GRAPES—A new generation of the national operational NWP system in China. Chin. Sci. Bull., 53, 34293432, doi:10.1007/s11434-008-0462-7.

    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., Y. Q. Ni, L. P. Liu, Y. Luo, and Y. Wang, 2011: South China Heavy Rainfall Experiments (SCHeREX). J. Meteor. Soc. Japan, 89A, 153166, doi:10.2151/jmsj.2011-A10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. B., Y. Luo, Q. Wan, W. Ding, and J. Sun, 2016: Impact of assimilating wind profiling radar observations on convection-permitting quantitative precipitation forecasts during SCMREX. Wea. Forecasting, 31, 12711292, doi:10.1175/WAF-D-15-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. J., W. T. Lu, Y. Zhang, D. Zheng, L. Chen, S. Chen, and X. Yan, 2014: Evaluation for the performance of the Guangdong-Hongkong-Macau lightning location system. Proc. 23th Int. Lightning Detection Conf., Tucson, Arizona, Vaisala, 1–5. [Available online at www.vaisala.com/en/events/ildcilmc/archive/Pages/ILDC-2014-archive.aspx.]

  • Zhou, X.-J., 2003: Heavy Rainfall Experiment in South China during Pre-summer Rainy Season (HUAMEX), 1998 (in Chinese). China Meteorological Press, 220 pp.

  • Zhu, X., and J. Zhu, 2004: New generation weather radar network in China (in Chinese). Mater. Sci. Technol., 32, 255258.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 295 295 65
PDF Downloads 342 342 34

The Southern China Monsoon Rainfall Experiment (SCMREX)

View More View Less
  • 1 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 2 Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, Guangzhou, China
  • | 3 Institute of Heavy Rainfall, Wuhan, China
  • | 4 Hong Kong Observatory, Hong Kong, China
  • | 5 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 6 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • | 7 Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, and Joint Center for Global Change Studies, Tsinghua University, Beijing, China
  • | 8 Colorado State University, Fort Collins, Colorado
  • | 9 Naval Postgraduate School, Monterey, California
  • | 10 NOAA/NCEP, College Park, Maryland
  • | 11 Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, Guangzhou, China
  • | 12 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 13 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  • | 14 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
  • | 15 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 16 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 17 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, and University of Chinese Academy of Sciences, Beijing, China
  • | 18 Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, Guangzhou, China
  • | 19 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 20 Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
  • | 21 CAAC East China Regional Air Traffic Administration, Shanghai, China
  • | 22 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 23 Shijiazhuang Meteorological Bureau, Shijiazhuang, China
  • | 24 Nanjing University, Nanjing, China
  • | 25 Institute of Heavy Rainfall, Wuhan, China
© Get Permissions
Restricted access

Abstract

During the presummer rainy season (April–June), southern China often experiences frequent occurrences of extreme rainfall, leading to severe flooding and inundations. To expedite the efforts in improving the quantitative precipitation forecast (QPF) of the presummer rainy season rainfall, the China Meteorological Administration (CMA) initiated a nationally coordinated research project, namely, the Southern China Monsoon Rainfall Experiment (SCMREX) that was endorsed by the World Meteorological Organization (WMO) as a research and development project (RDP) of the World Weather Research Programme (WWRP). The SCMREX RDP (2013–18) consists of four major components: field campaign, database management, studies on physical mechanisms of heavy rainfall events, and convection-permitting numerical experiments including impact of data assimilation, evaluation/improvement of model physics, and ensemble prediction. The pilot field campaigns were carried out from early May to mid-June of 2013–15. This paper: i) describes the scientific objectives, pilot field campaigns, and data sharing of SCMREX; ii) provides an overview of heavy rainfall events during the SCMREX-2014 intensive observing period; and iii) presents examples of preliminary research results and explains future research opportunities.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Yali Luo, yali@camscma.cn

Abstract

During the presummer rainy season (April–June), southern China often experiences frequent occurrences of extreme rainfall, leading to severe flooding and inundations. To expedite the efforts in improving the quantitative precipitation forecast (QPF) of the presummer rainy season rainfall, the China Meteorological Administration (CMA) initiated a nationally coordinated research project, namely, the Southern China Monsoon Rainfall Experiment (SCMREX) that was endorsed by the World Meteorological Organization (WMO) as a research and development project (RDP) of the World Weather Research Programme (WWRP). The SCMREX RDP (2013–18) consists of four major components: field campaign, database management, studies on physical mechanisms of heavy rainfall events, and convection-permitting numerical experiments including impact of data assimilation, evaluation/improvement of model physics, and ensemble prediction. The pilot field campaigns were carried out from early May to mid-June of 2013–15. This paper: i) describes the scientific objectives, pilot field campaigns, and data sharing of SCMREX; ii) provides an overview of heavy rainfall events during the SCMREX-2014 intensive observing period; and iii) presents examples of preliminary research results and explains future research opportunities.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Yali Luo, yali@camscma.cn
Save