• Adachi, T., K. Kusunoki, S. Yoshida, K. Arai, and T. Ushio, 2016: High-speed volumetric observation of wet microburst using X-band phased array weather radar in Japan. Mon. Wea. Rev., 144, 37493765, doi:10.1175/MWR-D-16-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adlerman, E. J., and K. K. Droegemeier, 2005: The dependence of numerically simulated cyclic mesocyclogenesis upon environmental vertical wind shear. Mon. Wea. Rev., 133, 35953623, doi:10.1175/MWR3039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adlerman, E. J., K. K. Droegemeier, and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 20452069, doi:10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, C. R., and J. Wurman, 2005: The 30 May 1998 Spencer, South Dakota, storm. Part I: The structural evolution and environment of the tornadoes. Mon. Wea. Rev., 133, 7297, doi:10.1175/MWR-2855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, C. R., and J. Wurman, 2008: Updated mobile radar climatology of supercell tornado structures and dynamics. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 19.4. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_141821.htm.]

  • Atkins, N. T., A. McGee, R. Ducharme, R. M. Wakimoto, and J. Wurman, 2012: The LaGrange tornado during VORTEX2. Part II: Photogrammetric analysis of the tornado combined with dual-Doppler radar data. Mon. Wea. Rev., 140, 29392958, doi:10.1175/MWR-D-11-00285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, J. R., J. L. Schroeder, and J. M. Wurman, 2006: High-resolution dual-Doppler analyses of the 29 May 2001 Kress, Texas, cyclic supercell. Mon. Wea. Rev., 134, 31253148, doi:10.1175/MWR3246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and A. L. Pazmany, 2000: Observations of tornadoes and other convective phenomena with a mobile, 3-mm wavelength, Doppler radar: The spring 1999 field experiment. Bull. Amer. Meteor. Soc., 81, 29392951, doi:10.1175/1520-0477(2000)081<2939:OOTAOC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., A. L. Pazmany, J. C. Galloway, and R. E. Mcintosh, 1995: Studies of the substructure of severe convective storms using a mobile 3-mm-wavelength Doppler radar. Bull. Amer. Meteor. Soc., 76, 21552169, doi:10.1175/1520-0477(1995)076<2155:SOTSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, and A. L. Pazmany, 2003: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part I: Tornadogenesis. Mon. Wea. Rev., 131, 29542967, doi:10.1175/1520-0493(2003)131<2954:MDROOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, and A. L. Pazmany, 2004: The vertical structure of a tornado near Happy, Texas, on 5 May 2002: High-resolution, mobile, W-band, Doppler radar observations. Mon. Wea. Rev., 132, 23252337, doi:10.1175/1520-0493(2004)132<2325:TVSOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, R. L. Tanamachi, S. Frasier, K. Hardwick, F. Junyent, and A. L. Pazmany, 2007a: Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Mon. Wea. Rev., 135, 15221543, doi:10.1175/MWR3349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, M. M. French, E. M. Holthaus, R. L. Tanamachi, S. Frasier, and A. L. Pazmany, 2007b: The structure of tornadoes near Attica, Kansas, on 12 May 2004: High-resolution, mobile, Doppler radar observations. Mon. Wea. Rev., 135, 475506, doi:10.1175/MWR3295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, I. PopStefanija, R. T. Bluth, and J. B. Knorr, 2010: A mobile, phased-array Doppler radar for the study of severe convective storms. Bull. Amer. Meteor. Soc., 91, 579600, doi:10.1175/2009BAMS2914.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and et al. , 2014: Radar in atmospheric sciences and related research: Current systems, emerging technology, and future needs. Bull. Amer. Meteor. Soc., 95, 18501861, doi:10.1175/BAMS-D-13-00079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., M. R. Kumjian, R. D. Palmer, P. L. Heinselman, and A. V. Ryzhkov, 2013: Tornado damage estimation using polarimetric radar. Wea. Forecasting, 28, 139158, doi:10.1175/WAF-D-11-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., T. Maruyama, R. D. Palmer, C. J. Fulton, H. B. Bluestein, and D. C. Lewellen, 2016: Sensitivity of tornado dynamics to soil debris loading. J. Atmos. Sci., 73, 27832801, doi:10.1175/JAS-D-15-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev., 106, 9951011, doi:10.1175/1520-0493(1978)106<0995:MEATSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., V. T. Wood, R. M. Steadham, R. R. Lee, B. A. Flickinger, and D. Sirmans, 2005: New WSR-88D volume coverage pattern 12: Results of field tests. Wea. Forecasting, 20, 385393, doi:10.1175/WAF848.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., and M. A. Baxter, 2011: Radar tornadic debris signatures on 27 April 2011. Electron. J. Oper. Meteor., 12(7), 16.

  • Burgess, D. W., V. T. Wood, and R. A. Brown, 1982: Mesocyclone evolution statistics. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422–424.

  • Cheong, B. L., R. D. Palmer, T.-Y. Yu, K.-F. Yang, M. W. Hoffman, S. J. Frasier, and F. J. Lopez-Dekker, 2008: Effects of wind field inhomogeneities on Doppler beam swinging revealed by an imaging radar. J. Atmos. Oceanic Technol., 25, 14141422, doi:10.1175/2007JTECHA969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., T. L. Clark, and M. W. Moncrieff, 1990: The Denver cyclone. Part I: Generation in low Froude number flow. J. Atmos. Sci., 47, 27252742, doi:10.1175/1520-0469(1990)047<2725:TDCPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., T. L. Clark, and M. W. Moncrieff, 1991: The Denver cyclone. Part II: Interaction with the convective boundary layer. J. Atmos. Sci., 48, 21092126, doi:10.1175/1520-0469(1991)048<2109:TDCPII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T., and R. Alberty, 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 16691687, doi:10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1986: Tornado dynamics. Thunderstorm Morphology and Dynamics, Vol. 2, E. Kessler, Ed., University of Oklahoma Press, 197–236.

  • Dowell, D. C., and H. B. Bluestein, 2002a: The 8 June 1995 Mclean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev., 130, 26262648, doi:10.1175/1520-0493(2002)130<2626:TJMTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002b: The 8 June 1995 Mclean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 26492670, doi:10.1175/1520-0493(2002)130<2649:TJMTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., C. R. Alexander, J. M. Wurman, and L. J. Wicker, 2005: Centrifuging of hydrometeors and debris in tornadoes: Radar-reflectivity patterns and wind-measurement errors. Mon. Wea. Rev., 133, 15011524, doi:10.1175/MWR2934.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finley, C. A., and B. D. Lee, 2004: High resolution mobile mesonet observations of RFD surges in the June 9 Basset, Nebraska supercell during Project ANSWERS 2003. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P11.3. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_82005.htm.]

  • Frame, J., P. Markowski, Y. Richardson, J. Straka, and J. Wurman, 2009: Polarimetric and dual-Doppler radar observations of the Lipscomb county, Texas, supercell thunderstorm on 23 May 2002. Mon. Wea. Rev., 137, 544561, doi:10.1175/2008MWR2425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, D. C. Dowell, L. J. Wicker, M. R. Kramar, and A. L. Pazmany, 2008: High-resolution, mobile Doppler radar observations of cyclic mesocyclogenesis in a supercell. Mon. Wea. Rev., 136, 49975016, doi:10.1175/2008MWR2407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2013: Reexamining the vertical development of tornadic vortex signatures in supercells. Mon. Wea. Rev., 141, 45764601, doi:10.1175/MWR-D-12-00315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2014: Mobile, phased-array, Doppler radar observations of tornadoes at X band. Mon. Wea. Rev., 142, 10101036, doi:10.1175/MWR-D-13-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., D. W. Burgess, E. R. Mansell, and L. J. Wicker, 2015a: Bulk hook echo raindrop sizes retrieved using mobile, polarimetric Doppler radar observations. J. Appl. Meteor. Climatol., 54, 423450, doi:10.1175/JAMC-D-14-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., P. S. Skinner, L. J. Wicker, and H. B. Bluestein, 2015b: Documenting a rare tornado merger observed in the 24 May 2011 El Reno–Piedmont, Oklahoma, supercell. Mon. Wea. Rev., 143, 30253043, doi:10.1175/MWR-D-14-00349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, doi:10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. L. Priegnitz, K. L. Manross, T. M. Smith, and R. W. Adams, 2008: Rapid sampling of severe storms by the national weather radar testbed phased array radar. Wea. Forecasting, 23, 808824, doi:10.1175/2008WAF2007071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. B., H. B. Bluestein, and J. C. Snyder, 2015: Rapid-scan, polarimetric, Doppler-radar observations of tornadogenesis and tornado dissipation in a tornadic supercell: The “El Reno, Oklahoma” storm of 24 May 2011. Mon. Wea. Rev., 143, 26852710, doi:10.1175/MWR-D-14-00253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. B., H. B. Bluestein, and J. C. Snyder, 2016: A finescale radar examination of the tornadic debris signature and weak-echo reflectivity band associated with a large, violent tornado. Mon. Wea. Rev., 144, 41014130, doi:10.1175/MWR-D-15-0408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isom, B., and et al. , 2013: The atmospheric imaging radar: Simultaneous volumetric observations using a phased array weather radar. J. Atmos. Oceanic Technol., 30, 655675, doi:10.1175/JTECH-D-12-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jain, A., 1989: Fundamentals of Digital Image Processing. Prentice-Hall, 569 pp.

  • Kosiba, K. A., and J. Wurman, 2013: The three-dimensional structure and evolution of a tornado boundary layer. Wea. Forecasting, 28, 15521561, doi:10.1175/WAF-D-13-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K. A., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, doi:10.1175/MWR-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., B. L. Cheong, R. D. Palmer, G. Zhang, and J. Meier, 2014: A pulse compression waveform for improved-sensitivity weather radar observations. J. Atmos. Oceanic Technol., 31, 27132731, doi:10.1175/JTECH-D-13-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., D. J. Bodine, B. L. Cheong, and R. D. Palmer, 2015: High-temporal resolution polarimetric X-band Doppler radar observations of the 20 May 2013 Moore, Oklahoma, tornado. Mon. Wea. Rev., 143, 27112735, doi:10.1175/MWR-D-14-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., C. A. Finley, and C. D. Karstens, 2012a: The Bowdle, South Dakota, cyclic tornadic supercell of 22 May 2010: Surface analysis of rear-flank downdraft evolution and multiple internal surges. Mon. Wea. Rev., 140, 34193441, doi:10.1175/MWR-D-11-00351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, P., A. P. Jayasumana, H. Dilum Bandara, S. Lim, and V. Chandrasekar, 2012b: A peer-to-peer collaboration framework for multi-sensor data fusion. J. Network Comput. Appl., 35, 10521066, doi:10.1016/j.jnca.2011.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, doi:10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., B. Gong, and W. S. Lewellen, 2008: Effects of finescale debris on near-surface tornado dynamics. J. Atmos. Sci., 65, 32473262, doi:10.1175/2008JAS2686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., D. C. Lewellen, and R. I. Sykes, 1997: Large-eddy simulation of a tornado’s interaction with the surface. J. Atmos. Sci., 54, 581605, doi:10.1175/1520-0469(1997)054<0581:LESOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852876, doi:10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: What we know and don’t know about tornado formation. Phys. Today, 67, 2631, doi:10.1063/PT.3.2514.

  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, doi:10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and et al. , 2012a: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 28872915, doi:10.1175/MWR-D-11-00336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and et al. , 2012b: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 29162938, doi:10.1175/MWR-D-11-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, J. Wurman, and P. Markowski, 2008: Single- and dual-Doppler analysis of a tornadic vortex and surrounding storm-scale flow in the Crowell, Texas, supercell of 30 April 2000. Mon. Wea. Rev., 136, 50175043, doi:10.1175/2008MWR2442.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, D. Dowell, and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327, doi:10.1175/MWR-D-11-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, D. Dowell, J. Wurman, K. Kosiba, P. Robinson, and G. Romine, 2014: An investigation of the Goshen County, Wyoming, tornadic supercell of 5 June 2009 using EnKF assimilation of mobile mesonet and radar observations collected during VORTEX2. Part I: Experiment design and verification of the EnKF analyses. Mon. Wea. Rev., 142, 530554, doi:10.1175/MWR-D-13-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and et al. , 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817, doi:10.1175/2009BAMS2507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mead, J. B., G. Hopcraft, S. J. Frasier, B. D. Pollard, C. D. Cherry, D. H. Schaubert, and R. E. McIntosh, 1998: A volume-imaging radar wind profiler for atmospheric boundary layer turbulence studies. J. Atmos. Oceanic Technol., 15, 849859, doi:10.1175/1520-0426(1998)015<0849:AVIRWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otsuka, S., and et al. , 2016: Precipitation nowcasting with three-dimensional space–time extrapolation of dense and frequent phased-array weather radar observations. Wea. Forecasting, 31, 329340, doi:10.1175/WAF-D-15-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, R. D., B. L. Cheong, M. W. Hoffman, S. J. Frasier, and F. J. López-Dekker, 2005: Observations of the small-scale variability of precipitation using an imaging radar. J. Atmos. Oceanic Technol., 22, 11221137, doi:10.1175/JTECH1775.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pazmany, A. L., J. B. Mead, H. B. Bluestein, J. C. Snyder, and J. B. Houser, 2013: A mobile rapid-scanning X-band polarimetric (RaXPol) Doppler radar system. J. Atmos. Oceanic Technol., 30, 13981413, doi:10.1175/JTECH-D-12-00166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schurr, D. W. Burgess, and D. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor. Climatol., 44, 557570, doi:10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and D. T. Dawson II, 2016: The cause of internal outflow surges in a high-resolution simulation of the 8 May 2003 Oklahoma City tornadic supercell. J. Atmos. Sci., 73, 353370, doi:10.1175/JAS-D-15-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., and et al. , 2012: Dual-polarization tornadic debris signatures Part I: Examples and utility in an operational setting. Electron. J. Oper. Meteor., 13(9), 120137.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, M. M. French, H. B. Bluestein, P. M. Markowski, and Y. P. Richardson, 2014: VORTEX2 observations of a low-level mesocyclone with multiple internal rear-flank downdraft momentum surges in the 18 May 2010, Dumas, Texas supercell. Mon. Wea. Rev., 142, 29352960, doi:10.1175/MWR-D-13-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, L. J. Wicker, C. K. Potvin, and D. C. Dowell, 2015: Forcing mechanisms for an internal rear-flank downdraft momentum surge in the 18 May 2010 Dumas, Texas supercell. Mon. Wea. Rev., 143, 43054330, doi:10.1175/MWR-D-15-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skolnik, M., 2002: Introduction to Radar Systems. 3rd ed., McGraw-Hill, 772 pp.

  • Snyder, J. C., and H. B. Bluestein, 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Wea. Forecasting, 29, 799827, doi:10.1175/WAF-D-14-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, V. Venkatesh, and S. J. Frasier, 2013: Observations of polarimetric signatures in supercells by an X-band mobile Doppler radar. Mon. Wea. Rev., 141, 329, doi:10.1175/MWR-D-12-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor. Climatol., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, J. B. Houser, S. J. Frasier, and K. M. Hardwick, 2012: Mobile, X-band, polarimetric Doppler radar observations of the 4 May 2007 Greensburg, Kansas, tornadic supercell. Mon. Wea. Rev., 140, 21032125, doi:10.1175/MWR-D-11-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, M. Xue, W.-C. Lee, K. A. Orzel, S. J. Frasier, and R. M. Wakimoto, 2013: Near-surface vortex structure in a tornado and in a sub-tornado-strength convective-storm vortex observed by a mobile, W-band radar during VORTEX2. Mon. Wea. Rev., 141, 36613690, doi:10.1175/MWR-D-12-00331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ushio, T., and et al. , 2014: Development and observation of the phased array radar at X band. 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), IEEE, 1–4, doi:10.1109/URSIGASS.2014.6929643.

    • Crossref
    • Export Citation
  • Van Den Broeke, M. S., 2015: Polarimetric tornadic debris signature variability and debris fallout signatures. J. Appl. Meteor. Climatol., 54, 23892405, doi:10.1175/JAMC-D-15-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., N. T. Atkins, and J. Wurman, 2011: The LaGrange tornado during VORTEX2. Part I: Photogrammetric analysis of the tornado combined with single-Doppler radar data. Mon. Wea. Rev., 139, 22332258, doi:10.1175/2010MWR3568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., P. Stauffer, W.-C. Lee, N. T. Atkins, and J. Wurman, 2012: Finescale structure of the LaGrange, Wyoming, tornado during VORTEX2: GBVTD and photogrammetric analyses. Mon. Wea. Rev., 140, 33973418, doi:10.1175/MWR-D-12-00036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., N. T. Atkins, K. M. Butler, H. B. Bluestein, K. Thiem, J. Snyder, and J. Houser, 2015: Photogrammetric analysis of the 2013 El Reno tornado combined with mobile X-band polarimetric radar data. Mon. Wea. Rev., 143, 26572683, doi:10.1175/MWR-D-15-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and et al. , 2016: Aerial damage survey of the 2013 El Reno tornado combined with mobile radar data. Mon. Wea. Rev., 144, 17491776, doi:10.1175/MWR-D-15-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, M. E., J. Y. N. Cho, J. S. Herd, J. M. Flavin, W. E. Benner, and G. S. Torok, 2007: The next-generation multimission U.S. surveillance radar network. Bull. Amer. Meteor. Soc., 88, 17391751, doi:10.1175/BAMS-88-11-1739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., 2002: The multiple-vortex structure of a tornado. Wea. Forecasting, 17, 473505, doi:10.1175/1520-0434(2002)017<0473:TMVSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164, doi:10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and M. Randall, 2001: An inexpensive, mobile, rapid-scan radar. 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., P3.4. [Available online at https://ams.confex.com/ams/30radar/techprogram/paper_21577.htm.]

  • Wurman, J., and T. Samaras, 2004: Comparison of in situ pressure and DOW Doppler winds in a tornado and RHI vertical slices through 4 tornadoes during 1996–2004. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 15.4. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_82352.htm.]

  • Wurman, J., and C. R. Alexander, 2005: The 30 May 1998 Spencer, South Dakota, storm. Part II: Comparison of observed damage and radar-derived winds in the tornadoes. Mon. Wea. Rev., 133, 97119, doi:10.1175/MWR-2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and K. Kosiba, 2013: Finescale radar observations of tornado and mesocyclone structures. Wea. Forecasting, 28, 11571174, doi:10.1175/WAF-D-12-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. M. Straka, and E. N. Rasmussen, 1996: Fine-scale Doppler radar observations of tornadoes. Science, 272, 17741777, doi:10.1126/science.272.5269.1774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007a: Dual-Doppler analysis of winds and vorticity budget terms near a tornado. Mon. Wea. Rev., 135, 23922405, doi:10.1175/MWR3404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007b: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758, doi:10.1175/MWR3276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Markowski, Y. Richardson, D. Dowell, and P. Robinson, 2010: Finescale single- and dual-Doppler analysis of tornado intensification, maintenance, and dissipation in the Orleans, Nebraska, supercell. Mon. Wea. Rev., 138, 44394455, doi:10.1175/2010MWR3330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, and P. Robinson, 2013: In situ, Doppler radar, and video observations of the interior structure of a tornado and the wind–damage relationship. Bull. Amer. Meteor. Soc., 94, 835846, doi:10.1175/BAMS-D-12-00114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Robinson, and T. Marshall, 2014: The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull. Amer. Meteor. Soc., 95, 3145, doi:10.1175/BAMS-D-13-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and et al. , 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766, doi:10.1175/BAMS-88-11-1753.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 111 111 14
PDF Downloads 119 119 18

Observations of Severe Local Storms and Tornadoes with the Atmospheric Imaging Radar

View More View Less
  • 1 Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • | 2 Advanced Study Program, NCAR, Boulder, Colorado
  • | 3 Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado
  • | 4 Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

Mobile radar platforms designed for observation of severe local storms have consistently pushed the boundaries of spatial and temporal resolution in order to allow for detailed analysis of storm structure and evolution. Digital beamforming, or radar imaging, is a technique that is similar in nature to a photograwphic camera, where data samples from different spaces at the same range are collected simultaneously. This allows for rapid volumetric update rates compared to radars that scan with a single narrow beam. The Atmospheric Imaging Radar (AIR) is a mobile X-band (3.14-cm wavelength) imaging weather radar that transmits a vertical, 20° fan beam and uses a 36-element receive array to form instantaneous range–height indicators (RHIs) with a native beamwidth of 1° × 1°. Rotation in azimuth allows for 20° × 90° volumetric updates in under 6 s, while advanced pulse compression techniques achieve 37.5-m range resolution. The AIR has been operational since 2012 and has collected data on tornadoes and supercells at ranges as close as 6 km, resulting in high spatial and temporal resolution observations of severe local storms. The use of atmospheric imaging is exploited to detail rapidly evolving phenomena that are difficult to observe with traditional scanning weather radars.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CURRENT AFFILIATION: KURDZO–MIT Lincoln Laboratory, Lexington, Massachusetts

CORRESPONDING AUTHOR: James M. Kurdzo, james.kurdzo@ll.mit.edu

A supplement to this article is available online (10.1175/BAMS-D-15-00266.2)

Abstract

Mobile radar platforms designed for observation of severe local storms have consistently pushed the boundaries of spatial and temporal resolution in order to allow for detailed analysis of storm structure and evolution. Digital beamforming, or radar imaging, is a technique that is similar in nature to a photograwphic camera, where data samples from different spaces at the same range are collected simultaneously. This allows for rapid volumetric update rates compared to radars that scan with a single narrow beam. The Atmospheric Imaging Radar (AIR) is a mobile X-band (3.14-cm wavelength) imaging weather radar that transmits a vertical, 20° fan beam and uses a 36-element receive array to form instantaneous range–height indicators (RHIs) with a native beamwidth of 1° × 1°. Rotation in azimuth allows for 20° × 90° volumetric updates in under 6 s, while advanced pulse compression techniques achieve 37.5-m range resolution. The AIR has been operational since 2012 and has collected data on tornadoes and supercells at ranges as close as 6 km, resulting in high spatial and temporal resolution observations of severe local storms. The use of atmospheric imaging is exploited to detail rapidly evolving phenomena that are difficult to observe with traditional scanning weather radars.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CURRENT AFFILIATION: KURDZO–MIT Lincoln Laboratory, Lexington, Massachusetts

CORRESPONDING AUTHOR: James M. Kurdzo, james.kurdzo@ll.mit.edu

A supplement to this article is available online (10.1175/BAMS-D-15-00266.2)

Supplementary Materials

    • Supplemental Materials (ZIP 13.5 MB)
Save