© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 3299–3310, doi10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2.
Ellrod, G. P., and D. I. Knapp, 1992: An objective clear-air turbulence forecasting technique: Verification and operational use. Wea. Forecasting, 7, 150–165, doi10.1175/1520-0434(1992)007<0150:AOCATF>2.0.CO;2.
Geller, M. A., H.-Y. Chun, and P. T. Love, 2016: FISAPS—An emerging SPARC activity. SPARC Newsletter, No. 47, SPARC Office, Zurich, Switzerland, 8–10.
Gill, P. G., 2012: Objective verification of World Area Forecast Centre clear air turbulence forecasts. Meteor. Appl., 21, 3–11, doi10.1002/met.1288.
Gill, P. G., and P. Buchanan, 2014: An ensemble based turbulence forecasting system. Meteor. Appl., 21, 12–19, doi10.1002/met.1373.
Kim, J.-H., and H.-Y. Chun, 2012: Development of the Korean Aviation Turbulence Guidance (KTG) system using the operational Unified Model (UM) of the Korea Meteorological Administration (KMA) and pilot reports (PIREPs). J. Korean Soc. Aviat. Aeronaut., 20, 76–83, doi10.12985/ksaa.2012.20.4.076.
Kim, J.-H., W. N. Chan, S. Banavar, and R. D. Sharman, 2015: Combined winds and turbulence prediction system for automated air-traffic management applications. J. Appl. Meteor. Climatol., 54, 766–784, doi10.1175/JAMC-D-14-0216.1.
Kim, J.-H., W. N. Chan, B. Sridhar, R. D. Sharman, P. D. Williams, and M. Strahan, 2016: Impact of the North Atlantic Oscillation on transatlantic flight routes and clear-air turbulence. J. Appl. Meteor. Climatol., 55, 763–771, doi10.1175/JAMC-D-15-0261.1.
Park, S.-H., J.-H. Kim, R. D. Sharman, and J. B. Klemp, 2016: Update of upper-level turbulence forecast by reducing unphysical components of topography in the numerical weather prediction model. Geophys. Res. Lett., 43, 7718–7724, doi10.1002/2016GL069446.
Schumann, U., Ed., 2012: Atmospheric Physics: Background–Methods–Trends. Springer, 877 pp., doi10.1007/978-3-642-30183-4.
Sharman, R., and T. Lane, 2016: Aviation Turbulence: Processes, Detection, Prediction. Springer, 523 pp.
Sharman, R., and J. M. Pearson, 2016: Prediction of energy dissipation rates for aviation turbulence. Part I: Forecasting nonconvective turbulence. J. Appl. Meteor. Climatol., 56, 317–337, doi10.1175/JAMC-D-16-0205.1.
Sharman, R., S. B. Trier, T. P. Lane, and J. D. Doyle, 2012: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophys. Res. Lett., 39, L12803, doi10.1029/2012GL051996.
Sharman, R., L. B. Cornman, G. Meymaris, J. Pearson, and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy dissipation rate reports of atmospheric turbulence. J. Appl. Meteor. Climatol., 53, 1416–1432, doi10.1175/JAMC-D-13-0329.1.
Trier, S. B., R. D. Sharman, and T. P. Lane, 2012: Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Mon. Wea. Rev., 140, 2477–2496, doi10.1175/MWR-D-11-00353.1.
Williams, P. D., 2016: Transatlantic flight times and climate change. Environ. Res. Lett., 11, 024008, doi10.1088/1748-9326/11/2/024008.
Williams, P. D., and M. M. Joshi, 2013: Intensification of winter transatlantic aviation turbulence in response to climate change. Nat. Climate Change, 3, 644–648, doi10.1038/nclimate1866.
Wong, W.-K., C.-S. Lau, and P.-W. Chan, 2013: Aviation model: A fine-scale numerical weather prediction system for aviation applications at the Hong Kong International Airport. Adv. Meteor., 2013, 532475, doi10.1155/2013/532475.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1 | 0 | 0 |
Full Text Views | 713 | 290 | 18 |
PDF Downloads | 482 | 145 | 9 |
Displayed acceptance dates for articles published prior to 2023 are approximate to within a week. If needed, exact acceptance dates can be obtained by emailing amsjol@ametsoc.org.
© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 3299–3310, doi10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2.
Ellrod, G. P., and D. I. Knapp, 1992: An objective clear-air turbulence forecasting technique: Verification and operational use. Wea. Forecasting, 7, 150–165, doi10.1175/1520-0434(1992)007<0150:AOCATF>2.0.CO;2.
Geller, M. A., H.-Y. Chun, and P. T. Love, 2016: FISAPS—An emerging SPARC activity. SPARC Newsletter, No. 47, SPARC Office, Zurich, Switzerland, 8–10.
Gill, P. G., 2012: Objective verification of World Area Forecast Centre clear air turbulence forecasts. Meteor. Appl., 21, 3–11, doi10.1002/met.1288.
Gill, P. G., and P. Buchanan, 2014: An ensemble based turbulence forecasting system. Meteor. Appl., 21, 12–19, doi10.1002/met.1373.
Kim, J.-H., and H.-Y. Chun, 2012: Development of the Korean Aviation Turbulence Guidance (KTG) system using the operational Unified Model (UM) of the Korea Meteorological Administration (KMA) and pilot reports (PIREPs). J. Korean Soc. Aviat. Aeronaut., 20, 76–83, doi10.12985/ksaa.2012.20.4.076.
Kim, J.-H., W. N. Chan, S. Banavar, and R. D. Sharman, 2015: Combined winds and turbulence prediction system for automated air-traffic management applications. J. Appl. Meteor. Climatol., 54, 766–784, doi10.1175/JAMC-D-14-0216.1.
Kim, J.-H., W. N. Chan, B. Sridhar, R. D. Sharman, P. D. Williams, and M. Strahan, 2016: Impact of the North Atlantic Oscillation on transatlantic flight routes and clear-air turbulence. J. Appl. Meteor. Climatol., 55, 763–771, doi10.1175/JAMC-D-15-0261.1.
Park, S.-H., J.-H. Kim, R. D. Sharman, and J. B. Klemp, 2016: Update of upper-level turbulence forecast by reducing unphysical components of topography in the numerical weather prediction model. Geophys. Res. Lett., 43, 7718–7724, doi10.1002/2016GL069446.
Schumann, U., Ed., 2012: Atmospheric Physics: Background–Methods–Trends. Springer, 877 pp., doi10.1007/978-3-642-30183-4.
Sharman, R., and T. Lane, 2016: Aviation Turbulence: Processes, Detection, Prediction. Springer, 523 pp.
Sharman, R., and J. M. Pearson, 2016: Prediction of energy dissipation rates for aviation turbulence. Part I: Forecasting nonconvective turbulence. J. Appl. Meteor. Climatol., 56, 317–337, doi10.1175/JAMC-D-16-0205.1.
Sharman, R., S. B. Trier, T. P. Lane, and J. D. Doyle, 2012: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophys. Res. Lett., 39, L12803, doi10.1029/2012GL051996.
Sharman, R., L. B. Cornman, G. Meymaris, J. Pearson, and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy dissipation rate reports of atmospheric turbulence. J. Appl. Meteor. Climatol., 53, 1416–1432, doi10.1175/JAMC-D-13-0329.1.
Trier, S. B., R. D. Sharman, and T. P. Lane, 2012: Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Mon. Wea. Rev., 140, 2477–2496, doi10.1175/MWR-D-11-00353.1.
Williams, P. D., 2016: Transatlantic flight times and climate change. Environ. Res. Lett., 11, 024008, doi10.1088/1748-9326/11/2/024008.
Williams, P. D., and M. M. Joshi, 2013: Intensification of winter transatlantic aviation turbulence in response to climate change. Nat. Climate Change, 3, 644–648, doi10.1038/nclimate1866.
Wong, W.-K., C.-S. Lau, and P.-W. Chan, 2013: Aviation model: A fine-scale numerical weather prediction system for aviation applications at the Hong Kong International Airport. Adv. Meteor., 2013, 532475, doi10.1155/2013/532475.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1 | 0 | 0 |
Full Text Views | 713 | 290 | 18 |
PDF Downloads | 482 | 145 | 9 |