• Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 32993310, doi10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., and D. I. Knapp, 1992: An objective clear-air turbulence forecasting technique: Verification and operational use. Wea. Forecasting, 7, 150165, doi10.1175/1520-0434(1992)007<0150:AOCATF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geller, M. A., H.-Y. Chun, and P. T. Love, 2016: FISAPS—An emerging SPARC activity. SPARC Newsletter, No. 47, SPARC Office, Zurich, Switzerland, 8–10.

  • Gill, P. G., 2012: Objective verification of World Area Forecast Centre clear air turbulence forecasts. Meteor. Appl., 21, 311, doi10.1002/met.1288.

  • Gill, P. G., and P. Buchanan, 2014: An ensemble based turbulence forecasting system. Meteor. Appl., 21, 1219, doi10.1002/met.1373.

  • Kim, J.-H., and H.-Y. Chun, 2012: Development of the Korean Aviation Turbulence Guidance (KTG) system using the operational Unified Model (UM) of the Korea Meteorological Administration (KMA) and pilot reports (PIREPs). J. Korean Soc. Aviat. Aeronaut., 20, 7683, doi10.12985/ksaa.2012.20.4.076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., W. N. Chan, S. Banavar, and R. D. Sharman, 2015: Combined winds and turbulence prediction system for automated air-traffic management applications. J. Appl. Meteor. Climatol., 54, 766784, doi10.1175/JAMC-D-14-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., W. N. Chan, B. Sridhar, R. D. Sharman, P. D. Williams, and M. Strahan, 2016: Impact of the North Atlantic Oscillation on transatlantic flight routes and clear-air turbulence. J. Appl. Meteor. Climatol., 55, 763771, doi10.1175/JAMC-D-15-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-H., J.-H. Kim, R. D. Sharman, and J. B. Klemp, 2016: Update of upper-level turbulence forecast by reducing unphysical components of topography in the numerical weather prediction model. Geophys. Res. Lett., 43, 77187724, doi10.1002/2016GL069446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, U., Ed., 2012: Atmospheric Physics: Background–Methods–Trends. Springer, 877 pp., doi10.1007/978-3-642-30183-4.

    • Crossref
    • Export Citation
  • Sharman, R., and T. Lane, 2016: Aviation Turbulence: Processes, Detection, Prediction. Springer, 523 pp.

    • Crossref
    • Export Citation
  • Sharman, R., and J. M. Pearson, 2016: Prediction of energy dissipation rates for aviation turbulence. Part I: Forecasting nonconvective turbulence. J. Appl. Meteor. Climatol., 56, 317337, doi10.1175/JAMC-D-16-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R., S. B. Trier, T. P. Lane, and J. D. Doyle, 2012: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophys. Res. Lett., 39, L12803, doi10.1029/2012GL051996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R., L. B. Cornman, G. Meymaris, J. Pearson, and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy dissipation rate reports of atmospheric turbulence. J. Appl. Meteor. Climatol., 53, 14161432, doi10.1175/JAMC-D-13-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., R. D. Sharman, and T. P. Lane, 2012: Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Mon. Wea. Rev., 140, 24772496, doi10.1175/MWR-D-11-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P. D., 2016: Transatlantic flight times and climate change. Environ. Res. Lett., 11, 024008, doi10.1088/1748-9326/11/2/024008.

  • Williams, P. D., and M. M. Joshi, 2013: Intensification of winter transatlantic aviation turbulence in response to climate change. Nat. Climate Change, 3, 644648, doi10.1038/nclimate1866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, W.-K., C.-S. Lau, and P.-W. Chan, 2013: Aviation model: A fine-scale numerical weather prediction system for aviation applications at the Hong Kong International Airport. Adv. Meteor., 2013, 532475, doi10.1155/2013/532475.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 68 68 15
PDF Downloads 73 73 17

Research Collaborations for Better Predictions of Aviation Weather Hazards

View More View Less
  • 1 Yonsei University, Seoul, South Korea
  • | 2 Colorado State University, Fort Collins, Colorado, and NOAA/Aviation Weather Center, Kansas City, Missouri
  • | 3 Yonsei University, Seoul, South Korea
  • | 4 NOAA/Aviation Weather Center, Kansas City, Missouri
  • | 5 Colorado State University, Fort Collins, Colorado, and NOAA/Aviation Weather Center, Kansas City, Missouri
  • | 6 Met Office, Exeter, United Kingdom
  • | 7 University of Reading, Reading, United Kingdom
  • | 8 Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
  • | 9 University at Purchase, State University of New York, Purchase, New York
  • | 10 National Institute of Meteorological Sciences, Jeju, South Korea
  • | 11 Aviation Meteorological Office, Incheon, South Korea
  • | 12 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Jung-Hoon Kim, jung-hoon.kim@noaa.gov

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Jung-Hoon Kim, jung-hoon.kim@noaa.gov
Save