LALINET: The First Latin American–Born Regional Atmospheric Observational Network

Juan Carlos Antuña-Marrero Grupo de Óptica Atmosférica de Camagüey, Centro Meteorológico de Camagüey, INSMET, Camagüey, Cuba

Search for other papers by Juan Carlos Antuña-Marrero in
Current site
Google Scholar
PubMed
Close
,
Eduardo Landulfo Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil

Search for other papers by Eduardo Landulfo in
Current site
Google Scholar
PubMed
Close
,
René Estevan Grupo de Óptica Atmosférica de Camagüey, Centro Meteorológico de Camagüey, INSMET, Camagüey, Cuba

Search for other papers by René Estevan in
Current site
Google Scholar
PubMed
Close
,
Boris Barja Grupo de Óptica Atmosférica de Camagüey, Centro Meteorológico de Camagüey, INSMET, Camagüey, Cuba, and Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Boris Barja in
Current site
Google Scholar
PubMed
Close
,
Alan Robock Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Alan Robock in
Current site
Google Scholar
PubMed
Close
,
Elián Wolfram División Lidar, CEILAP (UNIDEF-CONICET), Buenos Aires, Argentina

Search for other papers by Elián Wolfram in
Current site
Google Scholar
PubMed
Close
,
Pablo Ristori División Lidar, CEILAP (UNIDEF-CONICET), Buenos Aires, Argentina

Search for other papers by Pablo Ristori in
Current site
Google Scholar
PubMed
Close
,
Barclay Clemesha Upper Atmosphere Research Group, FISAT, INPE, São José dos Campos, Brazil

Search for other papers by Barclay Clemesha in
Current site
Google Scholar
PubMed
Close
,
Francesco Zaratti Laboratorio de Física de la Atmósfera, Universidad Mayor de San Andrés, La Paz, Bolivia

Search for other papers by Francesco Zaratti in
Current site
Google Scholar
PubMed
Close
,
Ricardo Forno Laboratorio de Física de la Atmósfera, Universidad Mayor de San Andrés, La Paz, Bolivia

Search for other papers by Ricardo Forno in
Current site
Google Scholar
PubMed
Close
,
Errico Armandillo ESTEC, ESA, Noordwijk, Netherlands

Search for other papers by Errico Armandillo in
Current site
Google Scholar
PubMed
Close
,
Álvaro E. Bastidas Escuela de Física, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia

Search for other papers by Álvaro E. Bastidas in
Current site
Google Scholar
PubMed
Close
,
Ángel M. de Frutos Baraja Grupo de Óptica Atmosférica, Universidad de Valladolid, Valladolid, Spain

Search for other papers by Ángel M. de Frutos Baraja in
Current site
Google Scholar
PubMed
Close
,
David N. Whiteman NASA GSFC, Greenbelt, Maryland

Search for other papers by David N. Whiteman in
Current site
Google Scholar
PubMed
Close
,
Eduardo Quel División Lidar, CEILAP (UNIDEF-CONICET), Buenos Aires, Argentina

Search for other papers by Eduardo Quel in
Current site
Google Scholar
PubMed
Close
,
Henrique M. J. Barbosa Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Henrique M. J. Barbosa in
Current site
Google Scholar
PubMed
Close
,
Fabio Lopes Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil

Search for other papers by Fabio Lopes in
Current site
Google Scholar
PubMed
Close
,
Elena Montilla-Rosero Centro de Óptica y Fotónica (CEFOP), Universidad de Concepción, Concepción, Chile, and Departamento de Ciencias Físicas, Escuela de Ciencias, Universidad Escuela de Administración, Finanzas e Instituto Tecnológico, Medellín, Colombia

Search for other papers by Elena Montilla-Rosero in
Current site
Google Scholar
PubMed
Close
, and
Juan L. Guerrero-Rascado Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil, and Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía, and Departamento de Física Aplicada, Universidad de Granada, Granada, Spain

Search for other papers by Juan L. Guerrero-Rascado in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sustained and coordinated efforts of lidar teams in Latin America at the beginning of the twenty-first century have built the Latin American Lidar Network (LALINET), the only observational network in Latin America created by the agreement and commitment of Latin American scientists. They worked with limited funding but an abundance of enthusiasm and commitment toward their joint goal. Before LALINET, there were a few pioneering lidar stations operating in Latin America, described briefly here. Biannual Latin American lidar workshops, held from 2001 to the present, supported both the development of the regional lidar community and LALINET. At those meetings, lidar researchers from Latin America met to conduct regular scientific and technical exchanges among themselves and with experts from the rest of the world. Regional and international scientific cooperation has played an important role in the development of both the individual teams and the network. The current LALINET status and activities are described, emphasizing the processes of standardization of the measurements, methodologies, calibration protocols, and retrieval algorithms. Failures and successes achieved in the buildup of LALINET are presented. In addition, the first LALINET joint measurement campaign and a set of aerosol extinction profile measurements obtained from the aerosol plume produced by the Calbuco volcano eruption on 22 April 2015 are described and discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: J. C. Antuña-Marrero, jcam45@gmail.com

Abstract

Sustained and coordinated efforts of lidar teams in Latin America at the beginning of the twenty-first century have built the Latin American Lidar Network (LALINET), the only observational network in Latin America created by the agreement and commitment of Latin American scientists. They worked with limited funding but an abundance of enthusiasm and commitment toward their joint goal. Before LALINET, there were a few pioneering lidar stations operating in Latin America, described briefly here. Biannual Latin American lidar workshops, held from 2001 to the present, supported both the development of the regional lidar community and LALINET. At those meetings, lidar researchers from Latin America met to conduct regular scientific and technical exchanges among themselves and with experts from the rest of the world. Regional and international scientific cooperation has played an important role in the development of both the individual teams and the network. The current LALINET status and activities are described, emphasizing the processes of standardization of the measurements, methodologies, calibration protocols, and retrieval algorithms. Failures and successes achieved in the buildup of LALINET are presented. In addition, the first LALINET joint measurement campaign and a set of aerosol extinction profile measurements obtained from the aerosol plume produced by the Calbuco volcano eruption on 22 April 2015 are described and discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: J. C. Antuña-Marrero, jcam45@gmail.com
Save
  • AFOSR, 1972: A study of feasibility of measuring atmospheric densities by using a searchlight technique. Rep. 43, AFOSR-616–67, 71 pp.

  • Ansmann, A., and Coauthors, 2010: The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany. Geophys. Res. Lett., 37, L13810, doi:10.1029/2010GL043809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., and Coauthors, 2011: Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010. J. Geophys. Res., 116, D00U02, doi:10.1029/2010JD015567.

    • Search Google Scholar
    • Export Citation
  • Antuña, J. C., A. Robock, P. O. Canziani, B. Clemesha, F. Zaratti, and E. Armandillo, 2002a: Toward a lidar network in Latin America, Lidar Remote Sensing in Atmospheric and Earth Sciences, Part II: Proceedings of 21st ILRC, L. Bissonnette, G. Roy, and G. Vallee, Eds., Valcartier, 345–348.

  • Antuña, J. C., A. Robock, G. L. Stenchikov, L. W. Thomason, and J. E. Barnes, 2002b: Lidar validation of SAGE II aerosol measurements after the 1991 Mount Pinatubo eruption. J. Geophys. Res., 107, 4194, doi:10.1029/2001JD001441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antuña, J. C., A. Robock, G. L. Stenchikov, J. Zhou, C. David, J. E. Barnes, and L. W. Thomason, 2003: Spatial and temporal variability of the stratospheric aerosol cloud produced by the 1991 Mount Pinatubo eruption. J. Geophys. Res., 108, 4624, doi:10.1029/2003JD003722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antuña, J. C., M. Andrade, E. Landulfo, B. Clemesha, E. Quel, and A. Bastidas, 2006: Building a lidar network in Latin America: Progress and difficulties. Proc. 23rd Int. Laser Radar Conf., Nara, Japan, ICLAS, 673–677.

  • Antuña, J. C., E. Landulfo, B. Clemesha, E. Quel, F. Zaratti, A. Bastida, and E. Solarte, 2008: A Lidar Network in Latin America in the context of GALION. Proc. 24th Int. Laser Radar Conf., Boulder, CO, NOAA/NCAR, 750–753.

  • Antuña, J. C., E. Quel, E. Landulfo, B. Clemesha, F. Zaratti, and Á. Bastidas, 2010: Towards a Lidar Federation in Latin America. Proc. 25th Int. Laser Radar Conf., St. Petersburg, Russia, Siberian Branch of the Russian Academy of Sciences, 924–927.

  • Antuña, J. C., R. Estevan, and B. Barja, 2012a:Demonstrating the potential for first-class research in underdeveloped countries: Research on stratospheric aerosols and cirrus clouds optical properties, and radiative effects in Cuba (1988–2010). Bull. Amer. Meteor. Soc., 93, 10171027, doi:10.1175/BAMS-D-11-00149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antuña, J. C., E. Landulfo, B. Clemesha, F. Zaratti, E. Quel, A. Bastidas, R. Estevan, and B. Barja, 2012b: Lidar community in Latin America: A decade of challenges and successes. Proc. 26th Int. Laser Radar Conf., Porto Heli, Greece, ICLAS, 323–326.

  • Barbosa, H. M. J., B. Barja, T. Pauliquevis, D. A. Gouveia, P. Artaxo, G. G. Cirino, R. M. N. Santos, and A. B. Oliveira, 2014a: A permanent Raman lidar station in the Amazon: Description, characterization and first results. Atmos. Meas. Tech., 7, 17451762, doi:10.5194/amt-7-1745-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbosa, H. M. J., and Coauthors, 2014b: The first ALINE measurements and intercomparison exercise on lidar inversion algorithms. Opt. Pura Apl., 47, 99108, doi:10.7149/OPA.47.2.99.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böckmann, C., and Coauthors, 2004: Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms, Appl. Opt., 43, 977989, doi:10.1364/AO.43.000977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bojinski, S., M. Verstraete, T. C. Peterson, C. Richter, A. Simmons, and M. Zemp, 2014: The concept of essential climate variables in support of climate research, applications and policy. Bull. Amer. Meteor. Soc., 95, 14311443, doi:10.1175/BAMS-D-13-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bösenberg, J., and Coauthors, 2000: EARLINET: A European Aerosol Research Lidar Network. Laser Remote Sensing of the Atmosphere: Selected Papers of the 2000 ILRC, A. Dabas and J. Pelon, Eds., Ecole Polytechnique, 155–158.

  • Bösenberg, J., and Coauthors, 2008: Plan for the implementation of the GAW Aerosol Lidar Observation Network GALION. GAW Rep. 178, WMO/TD-1443, 45 pp.

  • Chaikovsky, A., A. Ivanov, Yu. Balin, A. Elnikov, G. Tulinov, I. Plusnin, O. Bukin, and B. Chen, 2006: Lidar network CISLiNet for monitoring aerosol and ozone in CIS regions. Twelfth Joint International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics, G. A. Zherebtsov and G. G. Matvienko, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6160), 616035, doi:10.1117/12.675920.

    • Crossref
    • Export Citation
  • Chen, W. N., C. W. Chiang, and J. B. Nee, 2002: Lidar ratio and depolarization ratio for cirrus clouds. Appl. Opt., 41, 64706476, doi:10.1364/AO.41.006470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clemesha, B. R., and S. N. Rodrigues, 1971: The stratospheric scattering profile at 23°S. J. Atmos. Terr. Phys., 33, 11191123, doi:10.1016/0021-9169(71)90132-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clemesha, B. R., and D. M. Simonich, 1978: Stratospheric dust measurements 1970–1977. J. Geophys. Res., 83, 24032408, doi:10.1029/JC083iC05p02403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clemesha, B. R., G. S. Kent, and R. W. Wright, 1966: Laser probing the lower atmosphere. Nature, 209, 184186, doi:10.1038/209184a0.

  • Clemesha, B. R., D. Simonich, and P. Batista, 2011: Sodium lidar measurements of mesopause region temperatures at 23°S. Adv. Space Res., 47, 11651171, doi:10.1016/j.asr.2010.11.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Congedutti, F., G. P. Gobbi, A. Adriani, E. Quel, and C. Rosito, 1993: Sobre la instalación de un lidar monostatico en el complejo astronómico El Leoncito, San Juan, Argentina. IV Encuentro Latinoamericano sobre Óptica, Láseres y Aplicaciones y III Escuela y Taller Internacionales en FOTONICA, Oaxtepec, México, OPTILAS.

  • Fiocco, G., and G. Grams, 1964: Observations of the aerosol layer at 20 km by optical radar. J. Atmos. Sci., 21, 323324, doi:10.1175/1520-0469(1964)021<0323:OOTALA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forno, R., F. Ghezzi, T. Di Iorio, F. Zaratti, and E. Armadillo, 2006: First steps of the LIPAZ Project. IV Workshop on Lidar Measurements in Latin America, Ilhabella, Brazil, LALINET.

  • Giraldez, A., G. Fochesatto, M. Lavorato, C. Rosito, E. Quel, 1995: Medición de la capa limite atmosférica mediante un lidar. 80th Reunión Nacional de Física de Argentina, Bariloche, Argentina, Asociación de Física Argentina.

  • Groß, S., V. Freudenthaler, M. Wiegner, J. Gasteiger, A. Geiß, and F. Schnell, 2012: Dual-wavelength linear depolarization ratio of volcanic aerosols: Lidar measurements of the Eyjafjallajökull plume over Maisach, Germany. Atmos. Environ., 48, 8596, doi:10.1016/j.atmosenv.2011.06.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerrero-Rascado, J. L., R. F. da Costa, A. E. Bedoya, R. Guardani, L. Alados-Arboledas, A. E. Bastidas, and E. Landulfo, 2014: Multispectral elastic scanning lidar for flares research: Characterizing the electronic subsystem and application. Opt. Express, 22, 31 06331 077, doi:10.1364/OE.22.031063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerrero-Rascado, J. L., and Coauthors, 2016: Latin American Lidar Network (LALINET) for aerosol research diagnosis on network instrumentation. J. Atmos. Sol.-Terr. Phys., 138–139, 112120, doi:10.1016/j.jastp.2016.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoff, R. M., and Coauthors, 2002: Regional East Atmospheric Lidar Mesonet: REALM. Lidar Remote Sensing in Atmospheric and Earth Sciences, L. Bissonette, G. Roy, and G. Vallée, Eds., Defence R&D Canada Valcartier, 281–284.

  • Jäger, H., and T. Deshler, 2002: Lidar backscatter to extinction, mass and area conversions based on midlatitude balloonborne size distribution measurements. Geophys. Res. Lett., 29, 1929, doi:10.1029/2002GL015609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kane, T. J., C. S. Gardner, Q. Znou, J. D. Mathews, and C. A. Tepley, 1993: Lidar, radar and airglow observations of a prominent sporadic Na/sporadic E layer event at Arecibo during AIDA-89. J. Atmos. Terr. Phys., 55, 499511, doi:10.1016/0021-9169(93)90084-C.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurylo, M. J., 1991: Network for the detection of stratospheric change. Proc. Soc. Photo Opt. Instrum. Eng., 1491, 169174.

  • LALINET, 2014: Report of the inversion unified algorithm working group: I Workshop on Lidar Inversion Algorithms-LALINET. LALINET, 12 pp. [Available online at http://lalinet.org/uploads/Analysis/Concepcion2014/report_1_analysis_workshop.pdf.]

  • Landulfo, E., A. Papayanis, A. Z. de Freitas, M. P. P. M. Jorge, and N. D. Vieira Jr., 2001: Aerosols observations by an elastic lidar system over the city of São Paulo, Brazil. European Aerosol Conference, Leipzig, Germany, S407–S408.

  • Landulfo, E., and Coauthors, 2015: ALINE/LALINET network status. Proc. 27th Int. Laser Radar Conf., New York, NY, NOAA, 667–670.

  • Larroza, E. G., W. M. Nakaema, R. Bourayou, C. Hoareau, E. Landulfo, and P. Keckhut, 2013: Towards an automatic lidar cirrus cloud retrieval for climate studies. Atmos. Meas. Tech., 6, 31973210, doi:10.5194/amt-6-3197-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montilla-Rosero, E., A. Silva, C. Jiménez, C. Saavedra, and R. Hernández, 2012: Development of backscattered lidar system and first tropospheric measurements at Concepción, Chile (36° S, 73° W). Proc. 26th Int. Laser Radar Conf., Vol. II, Porto Heli, Greece, ICLAS, 973–976.

  • Montilla-Rosero, E., A. Silva, C. Jiménez, C. Saavedra, and R. Hernández, 2016: Optical characterization of lower tropospheric aerosols by the southern east Pacific lidar station (Concepción, Chile). J. Aerosol Sci., 92, 1626, doi:10.1016/j.jaerosci.2015.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nisperuza, D. J., and A. E. Bastidas, 2011: Development of a tropospheric lidar for observations of the planetary boundary layer above Medellín, Colombia. J. Phys. Sci. Appl., 1, 163169.

    • Search Google Scholar
    • Export Citation
  • OPA, cited 2015: OPA. [Available online at www.sedoptica.es/Menu_Volumenes/aboutopa.php.]

  • Papandrea, S., Y. Jin, P. Ristori, L. Otero, T. Nishizawa, A. Mizuno, N. Sugimoto, and E. Quel, 2016, Construction and first atmospheric observations of a high spectral resolution lidar system in Argentina in the frame of a trinational Japanese-Argentinean-Chilean collaboration. Lidar Remote Sensing for Environmental Monitoring XV, U. N. Singh et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9879), 98791M, doi:10.1117/12.2228167.

    • Crossref
    • Export Citation
  • Pappalardo, G., and Coauthors, 2014: EARLINET: Towards an advanced sustainable European aerosol lidar network. Atmos. Meas. Tech., 7, 23892409, doi:10.5194/amt-7-2389-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pazmiño, A., M. Lavorato, G. Fochesatto, P. Ristori, P. Cesarano, E. Quel, S. Godin, G. Mégie, 2000: Sistema dial para medición del perfil de ozono estratosférico. An. Asoc. Fis. Argent., 11, 338341.

    • Search Google Scholar
    • Export Citation
  • Pazmiño, A., E. Wolfram, E. Quel, M. Lavorato, R. Piacentini, S. Godin, J. Porteneuve, and G. Mégie, 2001: Intercomparison of ozone profiles measurements by Differential Absorption Lidar system and satellites at Buenos Aires, Argentina. 4th Iberoamerican Meeting on Optics and 7th Latin American Meeting on Optics, Lasers, and Their Applications, V. L. Brudny, S. A. Ledesma, M. C. Marconi, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4419), 499–502, doi:10.1117/12.437161.

    • Crossref
    • Export Citation
  • Philip, M. T., G. S. Kent, and M. T. Ottway, 1985: Lidar observations of the stratospheric aerosol layer over Kingston, Jamaica. J. Atmos. Sci., 42, 967974, doi:10.1175/1520-0469(1985)042<0967:LOOTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1973: Lidar and radiometric observations of cirrus clouds. J. Atmos. Sci., 30, 11911204, doi:10.1175/1520-0469(1973)030<1191:LAROOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quel, E. J., 2011: La química en el observatorio atmosférico de la Patagonia austral. La química en la Argentina, 1st ed., L. Galagovski, Ed., Asociación Química Argentina, 169–176.

  • Quel, E. J., and Coauthors, 2015: Aerosols monitoring network to create a volcanic ash risk management system in Argentina and Chile. Proc. 27th Int. Laser Radar Conf., New York, NY, NOAA, 675–678.

  • Rault, D. F., and R. P. Loughman, 2013: The OMPS Limb Profiler Environmental Data Record algorithm theoretical basis document and expected performance. IEEE Trans. Geosci. Remote Sens., 51, 25052527, doi:10.1109/TGRS.2012.2213093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., and J. C. Antuña, 2001a: Report on the Workshop on Lidar Measurements in Latin America. IAI Newsletter, Vol. 25, Inter-American Institute for Global Change Research, Montevideo, Uruguay, 7–10. [Available online at www.iai.int/wp-content/uploads/issue_25_2001.pdf.]

  • Robock, A., and J. C. Antuña, 2001b: Support for a tropical lidar in Latin America. Eos, Trans. Amer. Geophys. Union, 82, 285289, doi:10.1029/EO082i026p00285-03.

    • Search Google Scholar
    • Export Citation
  • Shimizu, A., and Coauthors, 2004: Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia. J. Geophys. Res., 109, D19S17, doi:10.1029/2002JD003253.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G. L., I. Kirchner, A. Robock, H.-F. Graf, J. C. Antuña, R. G. Grainger, A. Lambert, and L. Thomason, 1998: Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res., 103, 13 83713 857, doi:10.1029/98JD00693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, N., and Coauthors, 2015: Continuous observations of atmospheric aerosols across East Asia. SPIE Newsroom, accessed 8 February 2017, doi:10.1117/2.1201510.006178.

    • Crossref
    • Export Citation
  • Taha, G., D. F. Rault, R. P. Loughman, A. E. Bourassa, and C. von Savigny, 2011: SCIAMACHY stratospheric aerosol extinction profile retrieval using the OMPS/LP algorithm. Atmos. Meas. Tech., 4, 547556, doi:10.5194/amt-4-547-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tepley, C. A., S. I. Sargoytchev, and C. O. Hines, 1991: Initial Doppler Rayleigh lidar results at Arecibo. Geophys. Res. Lett., 18, 167170, doi:10.1029/90GL02670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tepley, C. A., S. I. Sargoytchev, and R. Rojas, 1993: The Doppler Rayleigh lidar at Arecibo. IEEE Trans. Geosci. Remote Sens., 31, 3647, doi:10.1109/36.210442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venable, D. D., D. N. Whiteman, M. N. Calhoun, A. O. Dirisu, R. M. Connell, and E. Landulfo, 2011: Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system. Appl. Opt., 50, 46224632, doi:10.1364/AO.50.004622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wandinger, U., and Coauthors, 2016: EARLINET instrument intercomparison campaigns: Overview on strategy and results. Atmos. Meas. Tech., 9, 10011023, doi:10.5194/amt-9-1001-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welton, E. J., J. R. Campbell, J. D. Spinhirne, and V. S. Scott, 2001: Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems. Lidar Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, T. Itabe, and N. Sugimoto, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4153), 151–158, doi:10.1117/12.417040.

    • Crossref
    • Export Citation
  • WMO, 1947: Convention of the World Meteorological Organization. WMO-15, 218 pp.

  • WMO, 2011: Climate knowledge for action: A global framework for climate services—Empowering the most vulnerable. WMO-1065, 248 pp. [Available online at http://library.wmo.int/pmb_ged/wmo_1065_en.pdf.]

  • Wolfram, E., A. Pazmiño, L. Otero, J. Salvador, R. Piacentini, J. Porteneuve, S. Godin-Beekmann, and E. Quel, 2004a: Stratospheric ozone lidar mobile system at Buenos Aires, Argentina. Proc. 22nd Int. Laser Radar Conf., Vol. II., Matera, Italy, Optical Society of America, 589–592.

  • Wolfram, E., J. Salvador, P. D’Aulerio, F. Fierli, F. Congeduti, J. Portenueve, and E. Quel, 2004b: Raman water vapor lidar at Buenos Aires, Argentina. Proc. 22nd Int. Laser Radar Conf., Vol. I., Matera, Italy, Optical Society of America, 443–446.

  • Wolfram, E., J. Salvador, L. Otero, A. Pazmiño, J. Porteneuve, S. Godin-Beeckmann, H. Nakane, and E. Quel, 2005: Solar campaign: Stratospheric ozone lidar of Argentina. Lidar Remote Sensing for Environmental Monitoring, International Society for Optical Engineering (SPIE Proceedings, Vol. 5887), 588713, doi:10.1117/12.620293.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1993 872 71
PDF Downloads 706 177 9