The SCALEX Campaign: Scale-Crossing Land Surface and Boundary Layer Processes in the TERENO-preAlpine Observatory

B. Wolf Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by B. Wolf in
Current site
Google Scholar
PubMed
Close
,
C. Chwala Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by C. Chwala in
Current site
Google Scholar
PubMed
Close
,
B. Fersch Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by B. Fersch in
Current site
Google Scholar
PubMed
Close
,
J. Garvelmann Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by J. Garvelmann in
Current site
Google Scholar
PubMed
Close
,
W. Junkermann Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by W. Junkermann in
Current site
Google Scholar
PubMed
Close
,
M. J. Zeeman Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by M. J. Zeeman in
Current site
Google Scholar
PubMed
Close
,
A. Angerer Institute for Software and Systems Engineering, University of Augsburg, Augsburg, Germany

Search for other papers by A. Angerer in
Current site
Google Scholar
PubMed
Close
,
B. Adler Division of Troposphere Research (TRO), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by B. Adler in
Current site
Google Scholar
PubMed
Close
,
C. Beck Institute of Geography (IGUA), University of Augsburg, Augsburg, Germany

Search for other papers by C. Beck in
Current site
Google Scholar
PubMed
Close
,
C. Brosy Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by C. Brosy in
Current site
Google Scholar
PubMed
Close
,
P. Brugger Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by P. Brugger in
Current site
Google Scholar
PubMed
Close
,
S. Emeis Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by S. Emeis in
Current site
Google Scholar
PubMed
Close
,
M. Dannenmann Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by M. Dannenmann in
Current site
Google Scholar
PubMed
Close
,
F. De Roo Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by F. De Roo in
Current site
Google Scholar
PubMed
Close
,
E. Diaz-Pines Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by E. Diaz-Pines in
Current site
Google Scholar
PubMed
Close
,
E. Haas Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by E. Haas in
Current site
Google Scholar
PubMed
Close
,
M. Hagen Institute of Atmospheric Physics, German Aerospace Center (DLR), Oberpfaffenhofen, Germany

Search for other papers by M. Hagen in
Current site
Google Scholar
PubMed
Close
,
I. Hajnsek Department of Radar Concepts, DLR, Oberpfaffenhofen, Germany, and Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland

Search for other papers by I. Hajnsek in
Current site
Google Scholar
PubMed
Close
,
J. Jacobeit Institute of Geography (IGUA), University of Augsburg, Augsburg, Germany

Search for other papers by J. Jacobeit in
Current site
Google Scholar
PubMed
Close
,
T. Jagdhuber Department of Radar Concepts, DLR, Oberpfaffenhofen, Germany

Search for other papers by T. Jagdhuber in
Current site
Google Scholar
PubMed
Close
,
N. Kalthoff Division of Troposphere Research (TRO), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by N. Kalthoff in
Current site
Google Scholar
PubMed
Close
,
R. Kiese Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by R. Kiese in
Current site
Google Scholar
PubMed
Close
,
H. Kunstmann Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, and Institute of Geography (IGUA), University of Augsburg, Augsburg, Germany

Search for other papers by H. Kunstmann in
Current site
Google Scholar
PubMed
Close
,
O. Kosak Institute for Software and Systems Engineering, University of Augsburg, Augsburg, Germany

Search for other papers by O. Kosak in
Current site
Google Scholar
PubMed
Close
,
R. Krieg Department of Catchment Hydrology, Helmholtz-Centre for Environmental Research (UFZ), Halle/Saale, Germany

Search for other papers by R. Krieg in
Current site
Google Scholar
PubMed
Close
,
C. Malchow Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by C. Malchow in
Current site
Google Scholar
PubMed
Close
,
M. Mauder Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by M. Mauder in
Current site
Google Scholar
PubMed
Close
,
R. Merz Department of Catchment Hydrology, Helmholtz-Centre for Environmental Research (UFZ), Halle/Saale, Germany

Search for other papers by R. Merz in
Current site
Google Scholar
PubMed
Close
,
C. Notarnicola Institute for Applied Remote Sensing, European Academy of Bolzano (EURAC), Bolzano, Italy

Search for other papers by C. Notarnicola in
Current site
Google Scholar
PubMed
Close
,
A. Philipp Institute of Geography (IGUA), University of Augsburg, Augsburg, Germany

Search for other papers by A. Philipp in
Current site
Google Scholar
PubMed
Close
,
W. Reif Institute for Software and Systems Engineering, University of Augsburg, Augsburg, Germany

Search for other papers by W. Reif in
Current site
Google Scholar
PubMed
Close
,
S. Reineke Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by S. Reineke in
Current site
Google Scholar
PubMed
Close
,
T. Rödiger Department of Catchment Hydrology, Helmholtz-Centre for Environmental Research (UFZ), Halle/Saale, Germany

Search for other papers by T. Rödiger in
Current site
Google Scholar
PubMed
Close
,
N. Ruehr Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by N. Ruehr in
Current site
Google Scholar
PubMed
Close
,
K. Schäfer Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by K. Schäfer in
Current site
Google Scholar
PubMed
Close
,
M. Schrön Department Monitoring and Exploration Technologies, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany

Search for other papers by M. Schrön in
Current site
Google Scholar
PubMed
Close
,
A. Senatore Department of Civil and Chemical Engineering, University of Calabria, Rende, Cosenza, Italy

Search for other papers by A. Senatore in
Current site
Google Scholar
PubMed
Close
,
H. Shupe Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by H. Shupe in
Current site
Google Scholar
PubMed
Close
,
I. Völksch Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by I. Völksch in
Current site
Google Scholar
PubMed
Close
,
C. Wanninger Institute for Software and Systems Engineering, University of Augsburg, Augsburg, Germany

Search for other papers by C. Wanninger in
Current site
Google Scholar
PubMed
Close
,
S. Zacharias Department Monitoring and Exploration Technologies, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany

Search for other papers by S. Zacharias in
Current site
Google Scholar
PubMed
Close
, and
H. P. Schmid Division of Atmospheric Environmental Research (IFU), Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by H. P. Schmid in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

ScaleX is a collaborative measurement campaign, collocated with a long-term environmental observatory of the German Terrestrial Environmental Observatories (TERENO) network in the mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land surface–atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated in a small number of locations. In contrast, short-term intensive campaigns offer the opportunity to assess spatial distributions and gradients by concentrated instrument deployments, and by mobile sensors (ground and/or airborne) to obtain transects and three-dimensional patterns of atmospheric, surface, or soil variables and processes. Moreover, intensive campaigns are ideal proving grounds for innovative instruments, methods, and techniques to measure quantities that cannot (yet) be automated or deployed over long time periods. ScaleX is distinctive in its design, which combines the benefits of a long-term environmental-monitoring approach (TERENO) with the versatility and innovative power of a series of intensive campaigns, to bridge across a wide span of spatial and temporal scales. This contribution presents the concept and first data products of ScaleX-2015, which occurred in June–July 2015. The second installment of ScaleX took place in summer 2016 and periodic further ScaleX campaigns are planned throughout the lifetime of TERENO. This paper calls for collaboration in future ScaleX campaigns or to use our data in modelling studies. It is also an invitation to emulate the ScaleX concept at other long-term observatories.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Benjamin Wolf, benjamin.wolf@kit.edu

Abstract

ScaleX is a collaborative measurement campaign, collocated with a long-term environmental observatory of the German Terrestrial Environmental Observatories (TERENO) network in the mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land surface–atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated in a small number of locations. In contrast, short-term intensive campaigns offer the opportunity to assess spatial distributions and gradients by concentrated instrument deployments, and by mobile sensors (ground and/or airborne) to obtain transects and three-dimensional patterns of atmospheric, surface, or soil variables and processes. Moreover, intensive campaigns are ideal proving grounds for innovative instruments, methods, and techniques to measure quantities that cannot (yet) be automated or deployed over long time periods. ScaleX is distinctive in its design, which combines the benefits of a long-term environmental-monitoring approach (TERENO) with the versatility and innovative power of a series of intensive campaigns, to bridge across a wide span of spatial and temporal scales. This contribution presents the concept and first data products of ScaleX-2015, which occurred in June–July 2015. The second installment of ScaleX took place in summer 2016 and periodic further ScaleX campaigns are planned throughout the lifetime of TERENO. This paper calls for collaboration in future ScaleX campaigns or to use our data in modelling studies. It is also an invitation to emulate the ScaleX concept at other long-term observatories.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Benjamin Wolf, benjamin.wolf@kit.edu
Save
  • Baldocchi, D., 2003: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biol., 9, 479492, doi:10.1046/j.1365-2486.2003.00629.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beniston, M., 2006: Mountain weather and climate: A general overview and a focus on climatic change in the Alps. Hydrobiologia, 562, 316, doi:10.1007/s10750-005-1802-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2015: The plumbing of land surface models: Benchmarking model performance. J. Hydrometeor., 16, 14251442, doi:10.1175/JHM-D-14-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boden, T. A., M. Krassovski, and B. Yang, 2013: The AmeriFlux data activity and data system: An evolving collection of data management techniques, tools, products and services. Geosci. Instrum. Methods Data Syst., 2, 165176, doi:10.5194/gi-2-165-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogena, H., 2010: Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J., 9, 10021013, doi:10.2136/vzj2009.0173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm, R., I. Auer, M. Brunetti, M. Maugeri, T. Nanni, and W. Schöner, 2001: Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int. J. Climatol., 21, 17791801, doi:10.1002/joc.689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bünzli, D., and H. P. Schmid, 1998: The influence of surface texture on regionally aggregated evaporation and energy partitioning. J. Atmos. Sci., 55, 961972, doi:10.1175/1520-0469(1998)055<0961:TIOSTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calanca, P., 2007: Climate change and drought occurrence in the Alpine region: How severe are becoming the extremes? Global Planet. Change, 57, 151160, doi:10.1016/j.gloplacha.2006.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, M. M., P. A. Matson, C. Wessman, and J. Gamon, 1993: Prospects for scaling. Scaling Physiological Processes: Leaf to Globe, J. R. Ehleringer and C. B. Field, Eds., Academic Press, 223–230.

    • Crossref
    • Export Citation
  • Clark, M. P., and Coauthors, 2015: Improving the representation of hydrologic processes in Earth System Models. Water Resour. Res., 51, 59295956, doi:10.1002/2015WR017096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, T. J., F. M. Kelliher, R. R. Sherlock, and C. D. Ford, 2004: Lime and soil moisture effects on nitrous oxide emissions from a urine patch. Soil Sci. Soc. Amer. J., 68, 16001609, doi:10.2136/sssaj2004.1600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coplen, T., A. Herczeg, and C. Barnes, 2000: Isotope engineering—Using stable isotopes of the water molecule to solve practical problems. Environmental Tracers in Subsurface Hydrology, P. Cook and A. Herczeg, Eds., 79110, doi:10.1007/978-1-4615-4557-6_3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denmead, O. T., M. R. Raupach, F. X. Dunin, H. A. Cleugh, and R. Leuning, 1996: Boundary layer budgets for regional estimates of scalar fluxes. Global Change Biol., 2, 255264, doi:10.1111/j.1365-2486.1996.tb00077.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desai, A. R., and Coauthors, 2011: Seasonal pattern of regional carbon balance in the central Rocky Mountains from surface and airborne measurements. J. Geophys. Res., 116, G04009, doi:10.1029/2011JG001655.

    • Search Google Scholar
    • Export Citation
  • Ehleringer, J. R., and C. B. Field, Eds., 1993: Scaling Physiological Processes: Leaf to Globe. Academic Press, 388 pp.

  • Emeis, S., 2008: Examples for the determination of turbulent (sub-synoptic) fluxes with inverse methods. Meteor. Z., 17, 311, doi:10.1127/0941-2948/2008/0265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emeis, S., 2015: Observational techniques to assist the coupling of CWE/CFD models and meso-scale meteorological models. J. Wind Eng. Ind. Aerodyn., 144, 2430, doi:10.1016/j.jweia.2015.04.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emeis, S., K. Schäfer, and C. Münkel, 2009: Observation of the structure of the urban boundary layer with different ceilometers and validation by RASS data. Meteor. Z., 18, 149154, doi:10.1127/0941-2948/2009/0365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., 2004: The footprint concept in complex terrain. Agric. For. Meteor., 127, 117129, doi:10.1016/j.agrformet.2004.07.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Firestein, S., 2012: Ignorance: How It Drives Science. Oxford University Press, 208 pp.

  • Goring, S. J., and Coauthors, 2014: Improving the culture of interdisciplinary collaboration in ecology by expanding measures of success. Front. Ecol. Environ., 12, 3947, doi:10.1890/120370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, F. G., 1999: Introduction to special section: BOREAS in 1999: Experiment and science overview. J. Geophys. Res., 104, 27 62727 639, doi:10.1029/1999JD901026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hingerl, L., H. Kunstmann, S. Wagner, M. Mauder, J. Bliefernicht, and R. Rigon, 2016: Spatiotemporal variability of water and energy fluxes—A case study for a mesoscale catchment in pre-alpine environment. Hydrol. Processes, 30, 38043823, doi:10.1002/hyp.10893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinkle, S. R., J. H. Duff, F. J. Triska, A. Laenen, E. B. Gates, K. E. Bencala, D. A. Wentz, and S. R. Silva, 2001: Linking hyporheic flow and nitrogen cycling near the Willamette River—A large river in Oregon, USA. J. Hydrol., 244, 157180, doi:10.1016/S0022-1694(01)00335-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hommeltenberg, J., M. Mauder, M. Drösler, K. Heidbach, P. Werle, and H. P. Schmid, 2014: Ecosystem scale methane fluxes in a natural temperate bog-pine forest in southern Germany. Agric. For. Meteor., 198–199, 273284, doi:10.1016/j.agrformet.2014.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J. B., and R. M. Holmes, 1996: Surface–subsurface interactions in stream ecosystems. Trends Ecol. Evol., 11, 239242, doi:10.1016/0169-5347(96)10013-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junkermann, W., 2001: An ultralight aircraft as platform for research in the lower troposphere: System performance and first results from radiation transfer studies in stratiform aerosol layers and broken cloud conditions. J. Atmos. Oceanic Technol., 18, 934946, doi:10.1175/1520-0426(2001)018<0934:AUAAPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junkermann, W., R. Hagemann, and B. Vogel, 2011: Nucleation in the Karlsruhe plume during the COPS/TRACKS-Lagrange experiment. Quart. J. Roy. Meteor. Soc., 137, 267274, doi:10.1002/qj.753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalbus, E., F. Reinstorf, and M. Schirmer, 2006: Measuring methods for groundwater–surface water interactions: A review. Hydrol. Earth Syst. Sci., 10, 873887, doi:10.5194/hess-10-873-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kampe, T., B. R. Johnson, M. Kuester, and M. Keller, 2010: NEON: The first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure. J. Appl. Remote Sens., 4, 043510, doi:10.1117/1.3361375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köhli, M., M. Schrön, M. Zreda, U. Schmidt, P. Dietrich, and S. Zacharias, 2015: Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons. Water Resour. Res., 51, 57725790, doi:10.1002/2015WR017169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., G. J. Ciach, and E. Habib, 2003: An analysis of small-scale rainfall variability in different climatic regimes. Hydrol. Sci. J., 48, 151162, doi:10.1623/hysj.48.2.151.44694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, S. A., 1992: The problem of pattern and scale in ecology. Ecology, 73, 19431967, doi:10.2307/1941447.

  • Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, doi:10.1175/JHM-D-11-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1987: Grid-averaged surface fluxes. Mon. Wea. Rev., 115, 15501560, doi:10.1175/1520-0493(1987)115<1550:GASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2010: Computing turbulent fluxes near the surface: Needed improvements. Agric. For. Meteor., 150, 501509, doi:10.1016/j.agrformet.2010.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauder, M., R. L. Desjardins, E. Pattey, and D. Worth, 2010: An attempt to close the daytime surface energy balance using spatially-averaged flux measurements. Bound.-Layer Meteor., 136, 175191, doi:10.1007/s10546-010-9497-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauder, M., M. Cuntz, C. Drüe, A. Graf, C. Rebmann, H. P. Schmid, M. Schmidt, and R. Steinbrecher, 2013: A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric. For. Meteor., 169, 122135, doi:10.1016/j.agrformet.2012.09.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, R., 1999: Unanswered questions in ecology. Philos. Trans. Roy. Soc. London, 354B, 19511959, doi:10.1098/rstb.1999.0534.

  • Metzger, S., and Coauthors, 2013: Spatially explicit regionalization of airborne flux measurements using environmental response functions. Biogeosciences, 10, 21932217, doi:10.5194/bg-10-2193-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, R. T. E., K. S. Gavazov, T. Spiegelberger, D. Johnson, and A. Buttler, 2014: Diminished soil functions occur under simulated climate change in a sup-alpine pasture, but heterotrophic temperature sensitivity indicates microbial resilience. Sci. Total Environ., 473–474, 465472, doi:10.1016/j.scitotenv.2013.12.071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527530.

  • Osmond, B., and Coauthors, 2004: Changing the way we think about global change research: Scaling up in experimental ecosystem science. Global Change Biol., 10, 393407, doi:10.1111/j.1529-8817.2003.00747.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pebesma, E. J., 2004: Multivariable geostatistics in S: The gstat package. Comput. Geosci., 30, 683691, doi:10.1016/j.cageo.2004.03.012.

  • Pihlatie, M. K., and Coauthors, 2010: Greenhouse gas fluxes in a drained peatland forest during spring frost-thaw event. Biogeosciences, 7, 17151727, doi:10.5194/bg-7-1715-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pihlatie, M. K., and Coauthors, 2013: Comparison of static chambers to measure CH4 emissions from soils. Agric. For. Meteor., 171–172, 124136, doi:10.1016/j.agrformet.2012.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulos, M. J., J. L. Pierce, A. N. Flores, and S. G. Benner, 2012: Hillslope asymmetry maps reveal widespread, multi-scale organization. Geophys. Res. Lett., 39, L06406, doi:10.1029/2012GL051283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, W. V., and Coauthors, 2005: Millenium Ecosystem Assessment: Ecosystems and Well-Being: Synthesis. Island Press, 155 pp. [Available online at www.millenniumassessment.org/documents/document.356.aspx.pdf.]

  • Ruehr, N. K., B. E. Law, D. Quandt, and M. Williams, 2014: Effects of heat and drought on carbon and water dynamics in a regenerating semi-arid pine forest: A combined experimental and modeling approach. Biogeosciences, 11, 41394156, doi:10.5194/bg-11-4139-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfer, K., J. Böttcher, D. Weymann, C. von der Heide, and W. H. M. Duijnisveld, 2012: Evaluation of a closed tunnel for field-scale measurements of nitrous oxide fluxes from an unfertilized grassland soil. J. Environ. Qual., 41, 1383, doi:10.2134/jeq2011.0475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, H. P., 2002: Footprint modeling for vegetation atmosphere exchange studies: A review and perspective. Agric. For. Meteor., 113, 159183, doi:10.1016/S0168-1923(02)00107-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, H. P., and C. R. Lloyd, 1999: Spatial representativeness and the location bias of flux footprints over inhomogeneous areas. Agric. For. Meteor., 93, 195209, doi:10.1016/S0168-1923(98)00119-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy, 1988: The First ISLSCP Field Experiment (FIFE). Bull. Amer. Meteor. Soc., 69, 2227, doi:10.1175/1520-0477(1988)069<0022:TFIFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy, 1992: An overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). J. Geophys. Res., 97, 18 34518 371, doi:10.1029/92JD02111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1995 : The Boreal Ecosystem–Atmosphere Study (BOREAS): An overview and early results from the 1994 field year. Bull. Amer. Meteor. Soc., 76, 15491577 , doi:10.1175/1520-0477(1995)076<1549:TBESAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smiatek, G., H. Kunstmann, R. Knoche, and A. Marx, 2009: Precipitation and temperature statistics in high-resolution regional climate models: Evaluation for the European Alps. J. Geophys. Res., 114, D19107, doi:10.1029/2008JD011353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sophocleous, M., 2002: Interactions between groundwater and surface water: The state of the science. Hydrogeol. J., 10, 5267, doi:10.1007/s10040-001-0170-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoy, P. C., and Coauthors, 2013: A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity. Agric. For. Meteor., 171–172, 137152, doi:10.1016/j.agrformet.2012.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2010: A multiscale and multidisciplinary investigation of ecosystem–atmosphere CO2 exchange over the Rocky Mountains of Colorado. Bull. Amer. Meteor. Soc., 91, 209230, doi:10.1175/2009BAMS2733.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tetzlaff, D., J. Seibert, K. J. McGuire, H. Laudon, D. A. Burns, S. M. Dunn, and C. Soulsby, 2009: How does landscape structure influence catchment transit time across different geomorphic provinces. Hydrol. Processes, 23, 945953, doi:10.1002/hyp.7240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlenbrook, S., M. Frey, C. Leibundgut, and P. Maloszewski, 2002: Hydrograph separations in a mesoscale mountainous basin at event and seasonal timescales. Water Resour. Res., 38, doi:10.1029/2001WR000938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, Z., X. Wu, B. Wolf, M. Dannenmann, K. Butterbach-Bahl, N. Brueggemann, W. W. Chen, and X. H. Zheng, 2010: Soil-atmosphere exchange potential of NO and N2O in different land use types of Inner Mongolia as affected by soil temperature, soil moisture, freeze-thaw, and drying-wetting events. J. Geophys. Res., 115, D17116, doi:10.1029/2009JD013528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zacharias, S., and Coauthors, 2011: A network of terrestrial environmental observatories in Germany. Vadose Zone J., 10, 955, doi:10.2136/vzj2010.0139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeeman, M. J., M. Mauder, R. Steinbrecher, K. Heidbach, E. Eckart, and H. P. Schmid, 2017: Reduced snow cover affects productivity of upland temperate grasslands. Agric. For. Meteor., 232, 514526, doi:10.1016/j.agrformet.2016.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zreda, M., D. Desilets, T. P. A. Ferre, and R. L. Scott, 2008: Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys. Res. Lett., 35, L21402, doi:10.1029/2008GL035655.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3329 2089 34
PDF Downloads 693 135 9