Mapping Rainfall Feedback to Reveal the Potential Sensitivity of Precipitation to Biological Aerosols

Cindy E. Morris INRA, Montfavet, France, and Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana

Search for other papers by Cindy E. Morris in
Current site
Google Scholar
PubMed
Close
,
Samuel Soubeyrand INRA, Avignon, France

Search for other papers by Samuel Soubeyrand in
Current site
Google Scholar
PubMed
Close
,
E. Keith Bigg Elanora Heights, NSW, Australia

Search for other papers by E. Keith Bigg in
Current site
Google Scholar
PubMed
Close
,
Jessie M. Creamean Cooperative Institute for Research in Environmental Sciences, Earth System Research Laboratory, NOAA, and NOAA Earth System Research Laboratory, Physical Sciences Division, Boulder, Colorado

Search for other papers by Jessie M. Creamean in
Current site
Google Scholar
PubMed
Close
, and
David C. Sands Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana

Search for other papers by David C. Sands in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The aerosols that influence the initiation and amount of precipitation are cloud condensation nuclei (CCN), giant CCN, and ice nuclei. Aerosols are ever-present, their properties are variable, and their abundance is dynamic. Therefore, the extent of their impact on the outcome of meteorological contexts that are favorable for rain are difficult to specify. Rainfall can generate aerosols. Those of biological origin that are generated after rainfall can accumulate in a persistent manner over several weeks. Based on a recently developed index of rainfall feedback that focuses on persistent feedback effects and that represents the a priori sensitivity of rainfall to aerosols— of biological origin in particular—we mapped the intensity and patterns of rainfall feedback at 1,250 sites in the western United States where 100-year daily rainfall data were available and where drought is critically severe. This map reveals trends in feedback related to orographic context, geographical location, and season, among other trends. We describe an open-access tool (http://w3.avignon.inra.fr/rainfallfeedback/index.html) for mapping rainfall feedback on a planetary scale to provide a framework for future research to generate hypotheses and to establish rationale to choose field sites for experimentation. This will contribute to the long-term goal of developing a robust understanding of specific and contextual aerosol effects on rainfall applicable to forecasting and to land-use management.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Cindy E. Morris, cindy.morris@inra.fr

A supplement to this article is available online (10.1175/BAMS-D-15-00293.2)

Abstract

The aerosols that influence the initiation and amount of precipitation are cloud condensation nuclei (CCN), giant CCN, and ice nuclei. Aerosols are ever-present, their properties are variable, and their abundance is dynamic. Therefore, the extent of their impact on the outcome of meteorological contexts that are favorable for rain are difficult to specify. Rainfall can generate aerosols. Those of biological origin that are generated after rainfall can accumulate in a persistent manner over several weeks. Based on a recently developed index of rainfall feedback that focuses on persistent feedback effects and that represents the a priori sensitivity of rainfall to aerosols— of biological origin in particular—we mapped the intensity and patterns of rainfall feedback at 1,250 sites in the western United States where 100-year daily rainfall data were available and where drought is critically severe. This map reveals trends in feedback related to orographic context, geographical location, and season, among other trends. We describe an open-access tool (http://w3.avignon.inra.fr/rainfallfeedback/index.html) for mapping rainfall feedback on a planetary scale to provide a framework for future research to generate hypotheses and to establish rationale to choose field sites for experimentation. This will contribute to the long-term goal of developing a robust understanding of specific and contextual aerosol effects on rainfall applicable to forecasting and to land-use management.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Cindy E. Morris, cindy.morris@inra.fr

A supplement to this article is available online (10.1175/BAMS-D-15-00293.2)

Supplementary Materials

    • Supplemental Materials (PDF 662.74 KB)
Save
  • Augustin-Bauditz, S., and Coauthors, 2015: The immersion freezing behavior of mineral dust particles mixed with biological substances. Atmos. Chem. Phys. Discuss., 15, 29 63929 671, doi:10.5194/acpd-15-29639-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1958: A long period fluctuation in freezing nucleus concentrations. J. Meteor., 15, 561562, doi:10.1175/1520-0469(1958)015<0561:ALPFIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 2004: Gas emissions from soil and leaf litter as a source of new particle formation. Atmos. Res., 70, 3342, doi:10.1016/j.atmosres.2003.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., S. Soubeyrand, and C. E. Morris, 2015: Persistent after-effects of heavy rain on concentrations of ice nuclei and rainfall suggest a biological cause. Atmos. Chem. Phys., 15, 23132326, doi:10.5194/acp-15-2313-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chilès, J. P., and P. Delfiner, 1999: Geostatistics—Modeling Spatial Uncertainty. John Wiley & Sons, 695 pp.

    • Crossref
    • Export Citation
  • Conen, F., C. E. Morris, J. Leifeld, M. V. Yakutin, and C. Alewell, 2011: Biological residues define the ice nucleation properties of soil dust. Atmos. Chem. Phys., 11, 96439648 doi:10.5194/acp-11-9643-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Creamean, J. M., A. P. Ault, J. E. Ten Hoeve, M. Z. Jacobson, G. C. Roberts, and K. A. Prather, 2011: Measurements of aerosol chemistry during new particle formation events at a remote rural mountain site. Environ. Sci. Technol., 45, 82088216, doi:10.1021/es103692f.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Creamean, J. M., A. P. Ault, A. B. White, P. J. Neiman, F. M. Ralph, P. Minnis, and K. A. Prather, 2015: Impact of interannual variations in sources of insoluble aerosol species on orographic precipitation over California’s central Sierra Nevada. Atmos. Chem. Phys., 15, 65356548, doi:10.5194/acp-15-6535-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Després, V. R., and coauthors, 2012: Primary biological aerosol particles in the atmosphere: A review. Tellus, 64B, 015598, doi:10.3402/tellusb.v64i0.15598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M., 2011: Climate change, atmospheric rivers, and floods in California: A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, doi:10.1111/j.1752-1688.2011.00546.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elbert, W., P. E. Taylor, M. O. Andreae, and U. Pöschl, 2007: Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos. Chem. Phys., 7, 45694588, doi:10.5194/acp-7-4569-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich-Nowoisky, J., T. C. J. Hill, B. G. Pummer, P. Yordanova, G. D. Franc, and U. Pöschl, 2015: Ice nucleation activity in the widespread soil fungus Mortierella alpina. Biogeosciences, 12, 10571071, doi:10.5194/bg-12-1057-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenberg, J. P., D. Asensio, A. Turnipseed, A. B. Guenther, T. Karl, and D. Gochis, 2012: Contribution of leaf and needle litter to whole ecosystem BVOC fluxes. Atmos. Environ., 59, 302311, doi:10.1016/j.atmosenv.2012.04.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossmann, E. B., J. S. Kagan, J. A. Ohmann, H. May, M. J. Gregory, and C. Tobalske, 2008: The Pacific Northwest regional GAP analysis project: Final report on Land Cover Mapping Methods, Map Zones 2 and 7, PNW ReGAP. Institute for Natural Resources, Oregon State University, 66 pp.

  • Guan, B., D. E. Waliser, N. P. Molotch, E. J. Fetzer, and P. J. Neiman, 2012: Does the Madden-Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon. Wea. Rev., 140, 325342, doi:10.1175/MWR-D-11-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, J. F., 2001: Half a century of cropland change. Geogr. Rev., 91, 525543, doi:10.2307/3594739.

  • Hayhoe, K., and coauthors, 2004: Emissions pathways, climate change, and impacts on California. Proc. Natl. Acad. Sci. USA, 101, 12 42212 427, doi:10.1073/pnas.0404500101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirano, S. S., L. S. Baker, and C. D. Upper, 1985: Ice nucleation temperature of individual leaves in relation to population sizes of ice nucleation active bacteria and frost injury. Plant Physiol., 77, 259265, doi:10.1104/pp.77.2.259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirano, S. S., L. S. Baker, and C. D. Upper, 1996: Raindrop momentum triggers growth of leaf-associated populations of Pseudomonas syringae on field-grown snap bean plants. Appl. Environ. Microbiol., 62, 25602566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, J. A., and coauthors, 2013: High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys., 13, 61516164, doi:10.5194/acp-13-6151-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulmala, M., and coauthors, 2004: A new feedback mechanism linking forests, aerosols, and climate. Atmos. Chem. Phys., 4, 557562, doi:10.5194/acp-4-557-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leff, J. W., and N. Fierer, 2008: Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol. Biochem., 40, 16291636, doi:10.1016/j.soilbio.2008.01.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letcher, T., and W. R. Cotton, 2014: The effect of pollution aerosol on wintertime orographic precipitation in the Colorado Rockies using a simplified emissions scheme to predict CCN concentrations. J. Appl. Meteor. Climatol., 53, 859872, doi:10.1175/JAMC-D-13-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, Z., and W. R. Cotton, Eds., 2008: Aerosol Pollution Impact on Precipitation: A Scientific Review. Springer, 386 pp.

    • Crossref
    • Export Citation
  • Lindemann, J., H. A. Constantinidiou, W. R. Barchet, and C. D. Upper, 1982: Plants as source of airborne bacteria, including ice nucleation-active bacteria. Appl. Environ. Microbiol., 44, 10591063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merikanto, J., D. V. Spracklen, G. W. Mann, S. J. Pickering, and K. S. Carslaw, 2009: Impact of nucleation on global CCN. Atmos. Chem. Phys., 9, 86018616, doi:10.5194/acp-9-8601-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, C. E., and coauthors, 2013: Urediospores of rust fungi are ice nucleation active at > –10°C and harbor ice nucleation active bacteria. Atmos. Chem. Phys., 13, 42234233, doi:10.5194/acp-13-4223-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, B. J., D. O’Sullivan, J. D. Atkinson, and M. E. Webb, 2012: Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev., 41, 65196554, doi:10.1039/c2cs35200a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and coauthors, 2014: Ice nucleation by fertile soil dusts: Relative importance of mineral and biogenic components. Atmos. Chem. Phys., 14, 18531867, doi:10.5194/acp-14-1853-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and coauthors, 2015: The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci. Rep., 5.

  • Pandey, G. R., D. R. Cayan, and K. P. Georgakakos, 1999: Precipitation structure in the Sierra Nevada of California during winter. J. Geophys. Res., 104, 12 01912 030, doi:10.1029/1999JD900103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phelps, P., T. H. Giddings, M. Prochoda, and R. Fall, 1986: Release of cell-free ice nuclei by Erwinia herbicola. J. Bacteriol., 167, 496502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and coauthors, 2009: Potential impacts from biological aerosols on ensembles of continental clouds simulated numerically. Biogeosciences, 6, 9871014, doi:10.5194/bg-6-987-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and coauthors, 2007: An overview of regional land-use and land-cover impacts on rainfall. Tellus, 59E, 587601, doi:10.1111/j.1600-0889.2007.00251.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., T. Coleman, P. J. Neiman, R. J. Zamora, and M. D. Dettinger, 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal northern California. J. Hydrometeor., 14, 443459, doi:10.1175/JHM-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., 1992: Microphysical structure and evolution of a central Sierra Nevada orographic cloud system. J. Appl. Meteor., 31, 324, doi:10.1175/1520-0450(1992)031<0003:MSAEOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riccobono, F., and coauthors, 2014: Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science, 344, 717721, doi:10.1126/science.1243527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, D. Axisa, E. Freud, J. G. Hudson, and A. C. D. Givati, 2008: Aircraft measurements of the impacts of pollution aerosols on clouds and precipitation over the Sierra Nevada. J. Geophys. Res., 113, D15203, doi:10.1029/2007JD009544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnell, R. C., and G. Vali, 1976: Biogenic ice nuclei: Part I. Terrestrial and marine sources. J. Atmos. Sci., 33, 15541564, doi:10.1175/1520-0469(1976)033<1554:BINPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soubeyrand, S., C. E. Morris, and E. K. Bigg, 2014: Analysis of fragmented time directionality in time series to elucidate feedbacks in climate data. Environ. Modell. Software, 61, 7886, doi:10.1016/j.envsoft.2014.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stopelli, E., F. Conen, C. E. Morris, E. Hermann, N. Bukowiecki, and C. Alewell, 2015: Ice nucleation active particles are efficiently removed by precipitating clouds. Sci. Rep., 5, 16433, doi:10.1038/srep16433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, S., and G. Salvucci, 2016: Empirical evidence of contrasting soil moisture–precipitation feedbacks across the United States. Science, 352, 825828, doi:10.1126/science.aaa7185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, T. P., J. D. Hader, G. R. McMeeking, and M. D. Petters, 2014: High relative humidity as a trigger for widespread release of ice nuclei. Aerosol Sci. Technol., 48, iv, doi:10.1080/02786826.2014.968244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, S., H. Ren, S. Fan, Y. Sun, Z. Wang, and P. Fu, 2016: Springtime precipitation effects on the abundance of fluorescent biological aerosol particles and HULIS in Beijing. Sci. Rep., 6, 29618, doi:10.1038/srep29618.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1406 625 46
PDF Downloads 541 73 11