NASA’s Remotely Sensed Precipitation: A Reservoir for Applications Users

Dalia B. Kirschbaum NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Dalia B. Kirschbaum in
Current site
Google Scholar
PubMed
Close
,
George J. Huffman NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by George J. Huffman in
Current site
Google Scholar
PubMed
Close
,
Robert F. Adler Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Robert F. Adler in
Current site
Google Scholar
PubMed
Close
,
Scott Braun NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Scott Braun in
Current site
Google Scholar
PubMed
Close
,
Kevin Garrett Riverside Technology, Inc., and NOAA/NESDIS/Center for Satellite Applications and Research, College Park, Maryland

Search for other papers by Kevin Garrett in
Current site
Google Scholar
PubMed
Close
,
Erin Jones Riverside Technology, Inc., and NOAA/NESDIS/Center for Satellite Applications and Research, College Park, Maryland

Search for other papers by Erin Jones in
Current site
Google Scholar
PubMed
Close
,
Amy McNally NASA Goddard Space Flight Center, Greenbelt, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Amy McNally in
Current site
Google Scholar
PubMed
Close
,
Gail Skofronick-Jackson NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Gail Skofronick-Jackson in
Current site
Google Scholar
PubMed
Close
,
Erich Stocker NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Erich Stocker in
Current site
Google Scholar
PubMed
Close
,
Huan Wu Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Huan Wu in
Current site
Google Scholar
PubMed
Close
, and
Benjamin F. Zaitchik The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Benjamin F. Zaitchik in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precipitation is the fundamental source of freshwater in the water cycle. It is critical for everyone, from subsistence farmers in Africa to weather forecasters around the world, to know when, where, and how much rain and snow is falling. The Global Precipitation Measurement (GPM) Core Observatory spacecraft, launched in February 2014, has the most advanced instruments to measure precipitation from space and, together with other satellite information, provides high-quality merged data on rain and snow worldwide every 30 min. Data from GPM and the predecessor Tropical Rainfall Measuring Mission (TRMM) have been fundamental to a broad range of applications and end-user groups and are among the most widely downloaded Earth science data products across NASA. End-user applications have rapidly become an integral component in translating satellite data into actionable information and knowledge used to inform policy and enhance decision-making at local to global scales. In this article, we present NASA precipitation data, capabilities, and opportunities from the perspective of end users. We outline some key examples of how TRMM and GPM data are being applied across a broad range of sectors, including numerical weather prediction, disaster modeling, agricultural monitoring, and public health research. This work provides a discussion of some of the current needs of the community as well as future plans to better support end-user communities across the globe to utilize this data for their own applications.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Dalia Kirschbaum, dalia.b.kirschbaum@nasa.gov

This article is included in the Global Precipitation Measurement (GPM) special collection.

Abstract

Precipitation is the fundamental source of freshwater in the water cycle. It is critical for everyone, from subsistence farmers in Africa to weather forecasters around the world, to know when, where, and how much rain and snow is falling. The Global Precipitation Measurement (GPM) Core Observatory spacecraft, launched in February 2014, has the most advanced instruments to measure precipitation from space and, together with other satellite information, provides high-quality merged data on rain and snow worldwide every 30 min. Data from GPM and the predecessor Tropical Rainfall Measuring Mission (TRMM) have been fundamental to a broad range of applications and end-user groups and are among the most widely downloaded Earth science data products across NASA. End-user applications have rapidly become an integral component in translating satellite data into actionable information and knowledge used to inform policy and enhance decision-making at local to global scales. In this article, we present NASA precipitation data, capabilities, and opportunities from the perspective of end users. We outline some key examples of how TRMM and GPM data are being applied across a broad range of sectors, including numerical weather prediction, disaster modeling, agricultural monitoring, and public health research. This work provides a discussion of some of the current needs of the community as well as future plans to better support end-user communities across the globe to utilize this data for their own applications.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Dalia Kirschbaum, dalia.b.kirschbaum@nasa.gov

This article is included in the Global Precipitation Measurement (GPM) special collection.

Save
  • AGRHYMET, 1996: Méthodologie de suivi des zones à risque. AGRHYMET FLASH, Bulletin de Suivi de la Campagne Agricole au Sahel 0/96, Vol. 2, 2 pp. [Available from Centre Regional AGRHYMET, B.P. 11011, Niamey, Niger.]

  • Beck, L. R., B. M. Lobitz, and B. L. Wood, 2000: Remote sensing and human health: New sensors and new opportunities. Emerging Infect. Dis., 6, 217227, doi:10.3201/eid0603.000301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, M. E., and K. M. de Beurs, 2008: Evaluation of multi-sensor semi-arid crop season parameters based on NDVI and rainfall. Remote Sens. Environ., 112, 22612271, doi:10.1016/j.rse.2007.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, M. E., and V. M. Escobar, 2014: Assessment of soil moisture data requirements by the potential SMAP data user community: Review of SMAP mission user community. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 277283, doi:10.1109/JSTARS.2013.2261473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Constantin de Magny, G., and Coauthors, 2012: Cholera outbreak in Senegal in 2005: Was climate a factor? PLoS One, 7, e44577, doi:10.1371/journal.pone.0044577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenberg, M. C., G. Kujbida, A. R. Tuite, D. N. Fisman, and J. H. Tien, 2013: Examining rainfall and cholera dynamics in Haiti using statistical and dynamic modeling approaches. Epidemics, 5, 197207, doi:10.1016/j.epidem.2013.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, B. J., B. F. Zaitchik, A. Sandoval, C. A. Antonio, R. P. Z. Vasquez, and W. K. Pan, 2013: Climate and land use drivers of the spatial and temporal distribution of malaria risk in the Peruvian Amazon. Proc. Conf. on Environment and Health, Basel, Switzerland, International Society for Environmental Epidemiology, Abstract 4668. [Available online at http://ehp.niehs.nih.gov/isee/p-3-12-07/.]

    • Crossref
    • Export Citation
  • FEWS-NET, 2016: Joint EC, FAO, FEWS NET and WFP statement on El Niño impact in southern Africa. Famine Early Warning Systems Network, accessed 3 May 2016. [Available online at www.fews.net/southern-africa/alert/february-2016.]

  • Funk, C., and Coauthors, 2015: The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, doi:10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, E., 2015: Satellite-based flood monitoring central to relief agencies’ disaster response. NASA, accessed 3 May 2016. [Available online at www.nasa.gov/feature/goddard/satellite-based-flood-monitoring-central-to-relief-agencies-disaster-response.]

  • Guha-Sapir, D., R. Below, and P. Hoyois, 2014: EM-DAT: The CRED/OFDA International Disaster Database. Université Catholique de Louvain, accessed 20 March 2014. [Available online at www.emdat.be/database.]

  • Guilloteau, C., M. Gosset, C. Vignolles, M. Alcoba, Y. M. Tourre, and J.-P. Lacaux, 2014: Impacts of satellite-based rainfall products on predicting spatial patterns of rift valley fever vectors. J. Hydrometeor., 15, 16241635, doi:10.1175/JHM-D-13-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., K. L. Hsu, X. G. Gao, S. Sorooshian, and X. Gao, 2004: Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network Cloud Classification System. J. Appl. Meteor., 43, 18341852, doi:10.1175/JAM2173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds., Springer, 3–22.

    • Crossref
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. J. Joyce, C. Kidd, E. J. Nelkin, and P. Xie, 2015: NASA Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.5, 30 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.]

  • Jayanthi, H., G. J. Husak, C. Funk, T. Magadzire, A. Adoum, and J. P. Verdin, 2014: A probabilistic approach to assess agricultural drought risk to maize in Southern Africa and millet in Western Sahel using satellite estimated rainfall. Int. J. Disaster Risk Reduct., 10, 490502, doi:10.1016/j.ijdrr.2014.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., and P. Xie, 2011: Kalman filter–based CMORPH. J. Hydrometeor., 12, 15471563, doi:10.1175/JHM-D-11-022.1.

  • Jutla, A., and Coauthors, 2013: Environmental factors influencing epidemic cholera. Amer. J. Trop. Med. Hyg., 89, 597607, doi:10.4269/ajtmh.12-0721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., A. Becker, G. Huffman, C. Muller, P. Joe, G. Skofronick-Jackson, and D. Kirschbaum, 2017: So, how much of the Earth’s surface is covered by rain gauges? Bull. Amer. Meteor. Soc., 98, 6978, doi:10.1175/BAMS-D-14-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucera, P. A., E. E. Ebert, J. F. Turk, V. Levizzani, D. Kirschbaum, F. J. Tapiador, A. Loew, and M. Borsche, 2013: Precipitation from space: Advancing Earth system science. Bull. Amer. Meteor. Soc., 94, 365375, doi:10.1175/BAMS-D-11-00171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauderdale, J. M., and Coauthors, 2014: Towards seasonal forecasting of malaria in India. Malar. J., 13, 310, doi:10.1186/1475-2875-13-310.

  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machault, V., C. Vignolles, F. Borchi, P. Vounatsou, F. Pages, S. Briolant, J.-P. Lacaux, and C. Rogier, 2011: The use of remotely sensed environmental data in the study of malaria. Geospat. Health, 5, 151168, doi:10.4081/gh.2011.167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacMillan, K., and Coauthors, 2012: Climate predictors of the spatial distribution of human plague cases in the West Nile region of Uganda. Amer. J. Trop. Med. Hyg., 86, 514523, doi:10.4269/ajtmh.2012.11-0569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Midekisa, A., G. Senay, G. M. Henebry, P. Semuniguse, and M. C. Wimberly, 2012: Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia. Malar. J., 11, 165, doi:10.1186/1475-2875-11-165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, doi:10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., K. MacMillan, S. M. Moore, P. S. Mead, M. H. Hayden, and R. J. Eisen, 2012: A regional climatography of West Nile, Uganda, to support human plague modeling. J. Appl. Meteor. Climatol., 51, 12011221, doi:10.1175/JAMC-D-11-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, S. M., A. Monaghan, K. S. Griffith, T. Apangu, P. S. Mead, and R. J. Eisen, 2012: Improvement of disease prediction and modeling through the use of meteorological ensembles: Human plague in Uganda. PLoS One, 7, e44431, doi:10.1371/journal.pone.0044431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2015: NASA Global Precipitation Measurement (GPM) level 1C algorithms. Algorithm Theoretical Basis Doc., 48 pp. [Available online at http://pps.gsfc.nasa.gov/Documents/L1C_ATBD.pdf.]

  • Pan, W., O. Branch, and B. Zaitchik, 2014: Impact of climate change on vector-borne disease in the Amazon. Global Climate Change and Public Health, E. K. Pinkerton and N. W. Rom, Eds., Springer, 193–210, doi:10.1007/978-1-4614-8417-2_11.

    • Crossref
    • Export Citation
  • Reed, P. M., N. W. Chaney, J. D. Herman, M. P. Ferringer, and E. W. Wood, 2015: Internationally coordinated multi-mission planning is now critical to sustain the space-based rainfall observations needed for managing floods globally. Environ. Res. Lett., 10, 024010, doi:10.1088/1748-9326/10/2/024010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senay, G. B., and J. Verdin, 2003: Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model. Can. J. Rem. Sens., 29, 687692, doi:10.5589/m03-039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., S. Burian, C. Liu, and S. Bernardes, 2016: Satellite precipitation metrics to study the energy-water-food nexus within the backdrop of an urbanized globe. Earthzine, accessed 3 May 2016. [Available online at http://earthzine.org/2016/05/31/satellite-precipitation-metrics-to-study-the-energy-water-food-nexus-within-the-backdrop-of-an-urbanized-globe/.]

  • Simpson, J., C. Kummerow, W.-K. Tao, and R. F. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60, 1936, doi:10.1007/BF01029783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S., 2014: Hurricane Julio Discussion Number 10. National Hurricane Center, accessed 3 May 2016. [Available online at www.nhc.noaa.gov/archive/2014/ep10/ep102014.discus.010.shtml.]

  • Stewart, S., and C. Jacobson, 2016: Hurricane Julio. NHC Tropical Cyclone Rep. 18 pp. [Available online at www.nhc.noaa.gov/data/tcr/EP102014_Julio.pdf.]

  • Tourre, Y. M., J.-P. Lacaux, C. Vignolles, and M. Lafaye, 2009: Climate impacts on environmental risks evaluated from space: A conceptual approach to the case of Rift Valley Fever in Senegal. Global Health Action, 2, 2053, doi:10.3402/gha.v2i0.2053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USGS, 2016: How much water is there on, in, and above the Earth? USGS Water Science School, accessed 6 May 2016. [Available online at http://water.usgs.gov/edu/earthhowmuch.html.]

  • Valle, D., B. Zaitchik, B. Feingold, K. Spangler, and W. Pan, 2013: Abundance of water bodies is critical to guide mosquito larval control interventions and predict risk of mosquito-borne diseases. Parasites Vectors, 6, 179, doi:10.1186/1756-3305-6-179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verdin, J., and R. Klaver, 2002: Grid-cell-based crop water accounting for the famine early warning system. Hydrol. Processes, 16, 16171630, doi:10.1002/hyp.1025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, doi:10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, A., and D. Kirschbaum, 2014: Measuring rain for society’s gain: A GPM Applications Workshop. The Earth Observer, Vol. 26, Issue 1, NASA Goddard Space Flight Center, Greenbelt, MD, 26–34. [Available online at http://eospso.nasa.gov/sites/default/files/eo_pdfs/Jan-Feb_2014_final_color_508.pdf.]

  • Ward, A., D. Kirschbaum, and M. Hobish, 2015: Measuring rain and snow for science and society: The Second GPM Applications Workshop. The Earth Observer, Vol. 27, Issue 5, NASA Goddard Space Flight Center, Greenbelt, MD, 4–11. [Available online at http://eospso.nasa.gov/sites/default/files/eo_pdfs/Sep_Oct_2015_color_508.pdf#page=4.]

  • WMO, 1992: International Meteorological Vocabulary. World Meteorological Organization, 784 pp.

  • Wu, H., R. F. Adler, Y. Hong, Y. Tian, and F. Policelli, 2012: Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. J. Hydrometeor., 13, 12681284, doi:10.1175/JHM-D-11-087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, H., R. F. Adler, Y. Tian, G. J. Huffman, H. Li, and J. Wang, 2014: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res., 50, 26932717, doi:10.1002/2013WR014710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Z., M. Gebremichael, R. Ahmad, M. L. Weldu, and A. C. Bagtzoglou, 2011: Impact of temperature and precipitation on propagation of intestinal schistosomiasis in an irrigated region in Ethiopia: Suitability of satellite datasets. Trop. Med. Int. Health, 16, 11041111, doi:10.1111/j.1365-3156.2011.02820.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., B. Feingold, D. Valle, and W. Pan, 2014: Integrating earth observations to support malaria risk monitoring in the Amazon. Earthzine, accessed 3 May 2016. [Available online at www.earthzine.org/2014/04/14/integrating-earth-observations-to-support-malaria-risk-monitoring-in-the-amazon/.]

  • Zinszer, K., R. Kigozi, K. Charland, G. Dorsey, T. F. Brewer, J. S. Brownstein, M. R. Kamya, and D. L. Buckeridge, 2015: Forecasting malaria in a highly endemic country using environmental and clinical predictors. Malar. J., 14, 245, doi:10.1186/s12936-015-0758-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10149 8267 55
PDF Downloads 999 163 12