PDRMIP: A Precipitation Driver and Response Model Intercomparison Project—Protocol and Preliminary Results

G. Myhre Center for International Climate and Environmental Research—Oslo, Oslo, Norway

Search for other papers by G. Myhre in
Current site
Google Scholar
PubMed
Close
,
P. M. Forster University of Leeds, Leeds, United Kingdom

Search for other papers by P. M. Forster in
Current site
Google Scholar
PubMed
Close
,
B. H. Samset Center for International Climate and Environmental Research—Oslo, Oslo, Norway

Search for other papers by B. H. Samset in
Current site
Google Scholar
PubMed
Close
,
Ø. Hodnebrog Center for International Climate and Environmental Research—Oslo, Oslo, Norway

Search for other papers by Ø. Hodnebrog in
Current site
Google Scholar
PubMed
Close
,
J. Sillmann Center for International Climate and Environmental Research—Oslo, Oslo, Norway

Search for other papers by J. Sillmann in
Current site
Google Scholar
PubMed
Close
,
S. G. Aalbergsjø Center for International Climate and Environmental Research—Oslo, Oslo, Norway

Search for other papers by S. G. Aalbergsjø in
Current site
Google Scholar
PubMed
Close
,
T. Andrews Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by T. Andrews in
Current site
Google Scholar
PubMed
Close
,
O. Boucher Laboratoire de Météorologie Dynamique, Institut Pierre Simon LaPlace, Université Pierre-et-Marie-Curie Centre National de la Recherche Scientifique, Paris, France

Search for other papers by O. Boucher in
Current site
Google Scholar
PubMed
Close
,
G. Faluvegi Columbia University, New York, New York

Search for other papers by G. Faluvegi in
Current site
Google Scholar
PubMed
Close
,
D. Fläschner Max-Planck-Institut für Meteorologie, Hamburg, Germany

Search for other papers by D. Fläschner in
Current site
Google Scholar
PubMed
Close
,
T. Iversen Norwegian Meteorological Institute, Oslo, Norway

Search for other papers by T. Iversen in
Current site
Google Scholar
PubMed
Close
,
M. Kasoar Imperial College London, London, United Kingdom

Search for other papers by M. Kasoar in
Current site
Google Scholar
PubMed
Close
,
V. Kharin Canadian Centre for Climate Modelling and Analysis, Victoria, British Columbia, Canada

Search for other papers by V. Kharin in
Current site
Google Scholar
PubMed
Close
,
A. Kirkevåg Norwegian Meteorological Institute, Oslo, Norway

Search for other papers by A. Kirkevåg in
Current site
Google Scholar
PubMed
Close
,
J.-F. Lamarque National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by J.-F. Lamarque in
Current site
Google Scholar
PubMed
Close
,
D. Olivié Norwegian Meteorological Institute, Oslo, Norway

Search for other papers by D. Olivié in
Current site
Google Scholar
PubMed
Close
,
T. B. Richardson University of Leeds, Leeds, United Kingdom

Search for other papers by T. B. Richardson in
Current site
Google Scholar
PubMed
Close
,
D. Shindell Duke University, Durham, North Carolina

Search for other papers by D. Shindell in
Current site
Google Scholar
PubMed
Close
,
K. P. Shine University of Reading, Reading, United Kingdom

Search for other papers by K. P. Shine in
Current site
Google Scholar
PubMed
Close
,
C. W. Stjern Center for International Climate and Environmental Research—Oslo, Oslo, Norway

Search for other papers by C. W. Stjern in
Current site
Google Scholar
PubMed
Close
,
T. Takemura Kyushu University, Fukuoka, Japan

Search for other papers by T. Takemura in
Current site
Google Scholar
PubMed
Close
,
A. Voulgarakis Imperial College London, London, United Kingdom

Search for other papers by A. Voulgarakis in
Current site
Google Scholar
PubMed
Close
, and
F. Zwiers Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by F. Zwiers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As the global temperature increases with changing climate, precipitation rates and patterns are affected through a wide range of physical mechanisms. The globally averaged intensity of extreme precipitation also changes more rapidly than the globally averaged precipitation rate. While some aspects of the regional variation in precipitation predicted by climate models appear robust, there is still a large degree of intermodel differences unaccounted for. Individual drivers of climate change initially alter the energy budget of the atmosphere, leading to distinct rapid adjustments involving changes in precipitation. Differences in how these rapid adjustment processes manifest themselves within models are likely to explain a large fraction of the present model spread and better quantifications are needed to improve precipitation predictions. Here, the authors introduce the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where a set of idealized experiments designed to understand the role of different climate forcing mechanisms were performed by a large set of climate models. PDRMIP focuses on understanding how precipitation changes relating to rapid adjustments and slower responses to climate forcings are represented across models. Initial results show that rapid adjustments account for large regional differences in hydrological sensitivity across multiple drivers. The PDRMIP results are expected to dramatically improve understanding of the causes of the present diversity in future climate projections.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: G. Myhre, gunnar.myhre@cicero.oslo.no

Abstract

As the global temperature increases with changing climate, precipitation rates and patterns are affected through a wide range of physical mechanisms. The globally averaged intensity of extreme precipitation also changes more rapidly than the globally averaged precipitation rate. While some aspects of the regional variation in precipitation predicted by climate models appear robust, there is still a large degree of intermodel differences unaccounted for. Individual drivers of climate change initially alter the energy budget of the atmosphere, leading to distinct rapid adjustments involving changes in precipitation. Differences in how these rapid adjustment processes manifest themselves within models are likely to explain a large fraction of the present model spread and better quantifications are needed to improve precipitation predictions. Here, the authors introduce the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where a set of idealized experiments designed to understand the role of different climate forcing mechanisms were performed by a large set of climate models. PDRMIP focuses on understanding how precipitation changes relating to rapid adjustments and slower responses to climate forcings are represented across models. Initial results show that rapid adjustments account for large regional differences in hydrological sensitivity across multiple drivers. The PDRMIP results are expected to dramatically improve understanding of the causes of the present diversity in future climate projections.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: G. Myhre, gunnar.myhre@cicero.oslo.no
Save
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, doi:10.1126/science.1160787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., C. Liu, M. Zahn, D. A. Lavers, E. Koukouvagias, and A. Bodas-Salcedo, 2014: Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys., 35, 533552, doi:10.1007/s10712-012-9213-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., P. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett., 37, L14701, doi:10.1029/2010GL043991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, L. H., W. J. Collins, D. J. L. Olivié, R. Cherian, Ø. Hodnebrog, G. Myhre, and J. Quaas, 2015: Climate responses to anthropogenic emissions of short-lived climate pollutants. Atmos. Chem. Phys., 15, 82018216, doi:10.5194/acp-15-8201-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bala, G., K. Caldeira, and R. Nemani, 2010: Fast versus slow response in climate change: Implications for the global hydrological cycle. Climate Dyn., 35, 423434, doi:10.1007/s00382-009-0583-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Schmidli, and C. Schär, 2015: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett., 42, 11651172, doi:10.1002/2014GL062588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellouin, N., J. Rae, A. Jones, C. Johnson, J. Haywood, and O. Boucher, 2011: Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J. Geophys. Res., 116, D20206, doi:10.1029/2011JD016074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687720, doi:10.5194/gmd-6-687-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, P., C. Moseley, and J. O. Haerter, 2013: Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci., 6, 181185, doi:10.1038/ngeo1731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, doi:10.1126/science.1204994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, doi:10.1038/ngeo1799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nat. Geosci., 8, 261268, doi:10.1038/ngeo2398.

  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Caesar, J., and J. A. Lowe, 2012: Comparing the impacts of mitigation versus non-intervention scenarios on future temperature and precipitation extremes in the HadGEM2 climate model. J. Geophys. Res., 117, D15109, doi:10.1029/2012JD017762.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model Dev., 4, 10511075, doi:10.5194/gmd-4-1051-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeAngelis, A. M., X. Qu, M. D. Zelinka, and A. Hall, 2015: An observational radiative constraint on hydrologic cycle intensification. Nature, 528, 249253, doi:10.1038/nature15770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, E. Highwood, and L. Wilcox, 2014: The impacts of European and Asian anthropogenic sulfur dioxide emissions on Sahel rainfall. J. Climate, 27, 70007017, doi:10.1175/JCLI-D-13-00769.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, A. J., and H. G. Griffiths, 2016: Quantifying the temperature-independent effect of stratospheric aerosol geoengineering on global-mean precipitation in a multi-model ensemble. Environ. Res. Lett., 11, 034012, doi:10.1088/1748-9326/11/3/034012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fildier, B., and W. D. Collins, 2015: Origins of climate model discrepancies in atmospheric shortwave absorption and global precipitation changes. Geophys. Res. Lett., 42, 87498757, doi:10.1002/2015GL065931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., J. Sedláček, E. Hawkins, and R. Knutti, 2014: Models agree on forced response pattern of precipitation and temperature extremes. Geophys. Res. Lett., 41, 85548562, doi:10.1002/2014GL062018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fläschner, D., T. Mauritsen, and B. Stevens, 2016: Understanding the intermodel spread in global-mean hydrological sensitivity. J. Climate, 29, 801817, doi:10.1175/JCLI-D-15-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

  • Frieler, K., M. Meinshausen, T. S. von Deimling, T. Andrews, and P. Forster, 2011: Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon. Geophys. Res. Lett., 38, L04702, doi:10.1029/2010GL045953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodnebrog, Ø., G. Myhre, and B. H. Samset, 2014: How shorter black carbon lifetime alters its climate effect. Nat. Commun., 5, 5065, doi:10.1038/ncomms6065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodnebrog, Ø., G. Myhre, P. M. Forster, J. Sillmann, and B. H. Samset, 2016: Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa. Nat. Commun., 7, 11236, doi:10.1038/ncomms11236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. W. Frierson, and S. M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 28452850, doi:10.1002/grl.50502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1–29.

  • Iversen, T., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M—Part 2: Climate response and scenario projections. Geosci. Model Dev., 6, 389415, doi:10.5194/gmd-6-389-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., N. M. Roberts, H. J. Fowler, M. J. Roberts, S. C. Chan, and C. A. Senior, 2014: Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Climate Change, 4, 570576, doi:10.1038/nclimate2258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, doi:10.1007/s10584-013-0705-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirkevåg, A., and Coauthors, 2013: Aerosol–climate interactions in the Norwegian Earth System Model-NorESM1-M. Geosci. Model Dev., 6, 207244, doi:10.5194/gmd-6-207-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedláček, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, doi:10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., D. Masson, and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett., 40, 11941199, doi:10.1002/grl.50256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, D., and A. D. Del Genio, 2010: Black carbon semi-direct effects on cloud cover: Review and synthesis. Atmos. Chem. Phys., 10, 76857696, doi:10.5194/acp-10-7685-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kravitz, B., and Coauthors, 2013: An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project. J. Geophys. Res. Atmos., 118, 13 08713 102, doi:10.1002/2013JD020502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kvalevåg, M. M., B. H. Samset, and G. Myhre, 2013: Hydrological sensitivity to greenhouse gases and aerosols in a global climate model. Geophys. Res. Lett., 40, 14321438, doi:10.1002/grl.50318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. Van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, doi:10.1038/ngeo262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacIntosh, C. R., R. P. Allan, L. H. Baker, N. Bellouin, W. Collins, Z. Mousavi, and K. P. Shine, 2016: Contrasting fast precipitation responses to tropospheric and stratospheric ozone forcing. Geophys. Res. Lett., 43, 12631271, doi:10.1002/2015GL067231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev., 4, 723757, doi:10.5194/gmd-4-723-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehran, A., A. AghaKouchak, and T. J. Phillips, 2014: Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res. Atmos., 119, 16951707, doi:10.1002/2013JD021152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., 2015: Direct weakening of tropical circulations from masked CO2 radiative forcing. Proc. Natl. Acad. Sci. USA, 112, 13 16713 171, doi:10.1073/pnas.1508268112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, Y., V. Ramaswamy, and G. Persad, 2010: Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys. Res. Lett., 37, L13701, doi:10.1029/2010GL042895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113, 293322, doi:10.1256/smsqj.47516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and P. A. O’Gorman, 2011: An energetic perspective on the regional response of precipitation to climate change. Nat. Climate Change, 1, 266271, doi:10.1038/nclimate1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013a: Anthropogenic and Natural Radiative Forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740.

  • Myhre, G., and Coauthors, 2013b: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys., 13, 18531877, doi:10.5194/acp-13-1853-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Rep. NCAR/TN-485+STR, 212 pp. [Available online at www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.]

  • O’Gorman, P. A., 2015: Precipitation extremes under climate change. Curr. Climate Change Rep., 1, 4959, doi:10.1007/s40641-015-0009-3.

  • O’Gorman, P. A., R. P. Allan, M. P. Byrne, and M. Previdi, 2012: Energetic constraints on precipitation under climate change. Surv. Geophys., 33, 585608, doi:10.1007/s10712-011-9159-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., and Coauthors, 2016: Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model. Bull. Amer. Meteor. Soc., 97, 735754, doi:10.1175/BAMS-D-14-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and D. L. Hartmann, 2012: Global-mean precipitation and black carbon in AR4 simulations. Geophys. Res. Lett., 39, L01703, doi:10.1029/2011GL050067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and D. L. Hartmann, 2014: The atmospheric energy constraint on global-mean precipitation change. J. Climate, 27, 757768, doi:10.1175/JCLI-D-13-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., F. Lehner, B. M. Sanderson, and Y. Xu, 2015: Does extreme precipitation intensity depend on the emissions scenario? Geophys. Res. Lett., 42, 87678774, doi:10.1002/2015GL065854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Previdi, M., 2010: Radiative feedbacks on global precipitation. Environ. Res. Lett., 5, 025211, doi:10.1088/1748-9326/5/2/025211.

  • Richardson, T. B., P. M. Forster, T. Andrews, and D. J. Parker, 2016: Understanding the rapid precipitation response to CO2 and aerosol forcing on a regional scale. J. Climate, 29, 583594, doi:10.1175/JCLI-D-15-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., M. A. Collier, D. T. Shindell, and O. Boucher, 2015: Why does aerosol forcing control historical global-mean surface temperature change in CMIP5 models? J. Climate, 28, 66086625, doi:10.1175/JCLI-D-14-00712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samset, B. H., and Coauthors, 2016: Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. Geophys. Res. Lett., 43, 27822791, doi:10.1002/2016GL068064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, doi:10.1002/2013MS000265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and A. Voigt, 2015: Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci., 8, 560566, doi:10.1038/ngeo2449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, O. Boucher, C. Bretherton, P. M. Forster, J. M. Gregory, and B. Stevens, 2015: Adjustments in the forcing-feedback framework for understanding climate change. Bull. Amer. Meteor. Soc., 96, 217228, doi:10.1175/BAMS-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., 2014: Inhomogeneous forcing and transient climate sensitivity. Nat. Climate Change, 4, 274277, doi:10.1038/nclimate2136.

  • Shindell, D. T., A. Voulgarakis, G. Faluvegi, and G. Milly, 2012: Precipitation response to regional radiative forcing. Atmos. Chem. Phys., 12, 69696982, doi:10.5194/acp-12-6969-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., G. Faluvegi, L. Rotstayn, and G. Milly, 2015: Spatial patterns of radiative forcing and surface temperature response. J. Geophys. Res. Atmos., 120, 53855403, doi:10.1002/2014JD022752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013a: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, doi:10.1002/jgrd.50188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., L. Pozzoli, E. Vignati, S. Kloster, and J. Feichter, 2013b: Aerosol effect on climate extremes in Europe under different future scenarios. Geophys. Res. Lett., 40, 22902295, doi:10.1002/grl.50459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, doi:10.1038/ngeo1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stier, P., and Coauthors, 2013: Host model uncertainties in aerosol radiative forcing estimates: Results from the AeroCom Prescribed Intercomparison Study. Atmos. Chem. Phys., 13, 32453270, doi:10.5194/acp-13-3245-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., 2009: The global hydrological cycle and atmospheric shortwave absorption in climate models under CO2 forcing. J. Climate, 22, 56675675, doi:10.1175/2009JCLI2674.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 110, D02202, doi:10.1029/2004jd005029.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., M. Egashira, K. Matsuzawa, H. Ichijo, R. O’Ishi, and A. Abe-Ouchi, 2009: A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum. Atmos. Chem. Phys., 9, 30613073, doi:10.5194/acp-9-3061-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, doi:10.3354/cr00953.

  • Trenberth, K. E., and G. R. Asrar, 2014: Challenges and opportunities in water cycle research: WCRP contributions. Surv. Geophys., 35, 515532, doi:10.1007/s10712-012-9214-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D. N., and Coauthors, 2014: The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations. Geosci. Model Dev., 7, 361386, doi:10.5194/gmd-7-361-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., A. Sharma, and S. Westra, 2016: Reduced spatial extent of extreme storms at higher temperatures. Geophys. Res. Lett., 43, 40264032, doi:10.1002/2016GL068509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., L. V. Alexander, and F. W. Zwiers, 2013: Global increasing trends in annual maximum daily precipitation. J. Climate, 26, 39043918, doi:10.1175/JCLI-D-12-00502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., and Coauthors, 2014: Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys., 52, 522555, doi:10.1002/2014RG000464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., and A. J. Broccoli, 2008: Equilibrium response of an atmosphere–mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 43994423, doi:10.1175/2008JCLI2172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5909 2914 182
PDF Downloads 1911 433 62