Defining a New Normal for Extremes in a Warming World

Sophie C. Lewis Fenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory, and ARC Centre of Excellence for Climate System Science, Melbourne, Victoria, Australia

Search for other papers by Sophie C. Lewis in
Current site
Google Scholar
PubMed
Close
,
Andrew D. King School of Earth Sciences, University of Melbourne, Parkville, and ARC Centre of Excellence for Climate System Science, Melbourne, Victoria, Australia

Search for other papers by Andrew D. King in
Current site
Google Scholar
PubMed
Close
, and
Sarah E. Perkins-Kirkpatrick Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, and ARC Centre of Excellence for Climate System Science, Melbourne, Victoria, Australia

Search for other papers by Sarah E. Perkins-Kirkpatrick in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The term “new normal” has been used in scientific literature and public commentary to contextualize contemporary climate events as an indicator of a changing climate due to enhanced greenhouse warming. A new normal has been used broadly but tends to be descriptive and ambiguously defined. Here we review previous studies conceptualizing this idea of a new climatological normal and argue that this term should be used cautiously and with explicit definition in order to avoid confusion. We provide a formal definition of a new climate normal relative to present based around record-breaking contemporary events and explore the timing of when such extremes become statistically normal in the future model simulations. Applying this method to the record-breaking global-average 2015 temperatures as a reference event and a suite of model climate models, we determine that 2015 global annual-average temperatures will be the new normal by 2040 in all emissions scenarios. At the regional level, a new normal can be delayed through aggressive greenhouse gas emissions reductions. Using this specific case study to investigate a climatological new normal, our approach demonstrates the greater value of the concept of a climatological new normal for understanding and communicating climate change when the term is explicitly defined. This approach moves us one step closer to understanding how current extremes will change in the future in a warming world.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Sophie C. Lewis, sophie.lewis@anu.edu.au

Abstract

The term “new normal” has been used in scientific literature and public commentary to contextualize contemporary climate events as an indicator of a changing climate due to enhanced greenhouse warming. A new normal has been used broadly but tends to be descriptive and ambiguously defined. Here we review previous studies conceptualizing this idea of a new climatological normal and argue that this term should be used cautiously and with explicit definition in order to avoid confusion. We provide a formal definition of a new climate normal relative to present based around record-breaking contemporary events and explore the timing of when such extremes become statistically normal in the future model simulations. Applying this method to the record-breaking global-average 2015 temperatures as a reference event and a suite of model climate models, we determine that 2015 global annual-average temperatures will be the new normal by 2040 in all emissions scenarios. At the regional level, a new normal can be delayed through aggressive greenhouse gas emissions reductions. Using this specific case study to investigate a climatological new normal, our approach demonstrates the greater value of the concept of a climatological new normal for understanding and communicating climate change when the term is explicitly defined. This approach moves us one step closer to understanding how current extremes will change in the future in a warming world.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Sophie C. Lewis, sophie.lewis@anu.edu.au
Save
  • Chalmers, N., E. J. Highwood, E. Hawkins, R. Sutton, and L. J. Wilcox, 2012: Aerosol contribution to the rapid warming of near-term climate under RCP 2.6. Geophys. Res. Lett., 39, L18709, doi:10.1029/2012GL052848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., G. S. Jones, and P. A. Stott, 2014: Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Climate Change, 5, 4650, doi:10.1038/nclimate2468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nat. Climate Change, 2, 491496, doi:10.1038/nclimate1452.

  • Diaz, H. P., D. J. Sauchyn, and S. N. Kulshreshtha, Eds., 2010: The New Normal: The Canadian Prairies in a Changing Climate. Canadian Plains Research Center, 380 pp.

  • Diffenbaugh, N. S., and M. Scherer, 2011: Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries. Climatic Change, 107, 615624, doi:10.1007/s10584-011-0112-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franz Prein, A., 2016: Dry is the new normal: Southwest U.S. has gotten drier and more prone to droughts. The Conversation. [Available online at https://theconversation.com/dry-is-the-new-normal-southwest-u-s-has-gotten-drier-and-more-prone-to-droughts-54387.]

  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and Coauthors, 2014: Uncertainties in the timing of unprecedented climates. Nature, 511, E3E5, doi:10.1038/nature13523.

  • IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, 582 pp.

  • King, A. D., and Coauthors, 2015: The timing of anthropogenic emergence in simulated climate extremes. Environ. Res. Lett., 10, 094015, doi:10.1088/1748-9326/10/9/094015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., F. Zeng, and A. T. Wittenberg, 2014: Multimodel assessment of extreme annual-mean warm anomalies during 2013 over regions of Australia and the western tropical Pacific [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95(9), S26S30, doi:10.1175/1520-0477-95.9.S1.1.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedláček, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, doi:10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, S. C., and D. J. Karoly, 2013: Anthropogenic contributions to Australia’s record summer temperatures of 2013. Geophys. Res. Lett., 40, 37053709, doi:10.1002/grl.50673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, S. C., and D. J. Karoly, 2014: The role of anthropogenic forcing in the record 2013 Australia-wide annual and spring temperatures [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95(9), S31S34, doi:10.1175/1520-0477-95.9.S1.1.

    • Search Google Scholar
    • Export Citation
  • Lewis, S. C., and S. E. Perkins-Kirkpatrick, 2016: More angry, more often: March heatwave signals a new normal. The Conversation. [Available online at https://theconversation.com/more-angry-more-often-march-heatwave-signals-a-new-normal-13068.]

  • Lewis, S. C., D. J. Karoly, and M. Yu, 2014: Quantitative estimates of anthropogenic contributions to extreme national and State monthly, seasonal and annual average temperatures for Australia. Aust. Meteor. Oceanogr. J., 64, 215230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mora, C., and Coauthors, 2013: The projected timing of climate departure from recent variability. Nature, 502, 183187, doi:10.1038/nature12540.

  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., X. Zhang, and F. W. Zwiers, 2016: Historically hottest summers projected to be the norm for more than half of the world’s population within 20 years. Environ. Res. Lett., 11, 044011, doi:10.1088/1748-9326/11/4/044011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, Engineering, and Medicine, 2016: Attribution of Extreme Weather Events in the Context of Climate Change. National Academies Press, 186 pp., doi:10.17226/21852.

    • Crossref
    • Export Citation
  • Perkins, S. E., and A. Pitman, 2014: Australian heatwaves—The new normal? New Idealist, (5) 111. [Available online at http://theintelligentreview.com/the-new-idealist-issue-5-doomsday-edition/.]

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., A. Pitman, N. J. Holbrook, and J. McAneney, 2007: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20, 43564376, doi:10.1175/JCLI4253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., L. V. Alexander, and J. R. Nairn, 2012: Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett., 39, L20714, doi:10.1029/2012GL053361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, G. P., and Coauthors, 2013: The challenge to keep global warming below 2°C. Nature, 3, 46, doi:10.1038/nclimate1783.

  • Peterson, T. C., P. A. Stott, and S. C. Herring, 2012: Explaining extreme events of 2011 from a climate perspective. Bull. Amer. Meteor. Soc., 93, 10411067, doi:10.1175/BAMS-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., P. L. Vidale, D. Lüthi, C. Frei, and C. Häberli, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336, doi:10.1038/nature02300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution to the European heatwave of 2003. Nature, 432, 610614, doi:10.1038/nature03089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and Coauthors, 2012: Attribution of weather and climate-related extreme events. WCRP Position Paper on ACE, 44 pp. [Available online at http://library.wmo.int/pmb_ged/wcrp_2011-stott.pdf.]

  • Sun, Y., X. Zhang, F. W. Zwiers, L. Song, H. Wan, T. Hu, H. Yin, and G. Ren, 2014: Rapid increase in the risk of extreme summer heat in Eastern China. Nat. Climate Change, 4, 10821085, doi:10.1038/nclimate2410.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and T. G. Shepherd, 2015: Attribution of climate extreme events. Nat. Climate Change, 5, 725730, doi:10.1038/nclimate2657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, K. R., J. E. Overland, S. A. Salo, N. A. Bond, W. J. Williams, and X. Dong, 2013: Is there a “new normal” climate in the Beaufort Sea? Polar Res., 32, 437439, doi:10.3402/polar.v32i0.19552.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5306 1886 108
PDF Downloads 1019 183 8