Arctic Radiation-IceBridge Sea and Ice Experiment: The Arctic Radiant Energy System during the Critical Seasonal Ice Transition

William L. Smith Jr. NASA Langley Research Center, Hampton, Virginia

Search for other papers by William L. Smith Jr. in
Current site
Google Scholar
PubMed
Close
,
Christy Hansen NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Christy Hansen in
Current site
Google Scholar
PubMed
Close
,
Anthony Bucholtz Naval Research Laboratory, Monterey, California

Search for other papers by Anthony Bucholtz in
Current site
Google Scholar
PubMed
Close
,
Bruce E. Anderson NASA Langley Research Center, Hampton, Virginia

Search for other papers by Bruce E. Anderson in
Current site
Google Scholar
PubMed
Close
,
Matthew Beckley SGT, Lanham, Maryland

Search for other papers by Matthew Beckley in
Current site
Google Scholar
PubMed
Close
,
Joseph G. Corbett SSAI, Hampton, Virginia

Search for other papers by Joseph G. Corbett in
Current site
Google Scholar
PubMed
Close
,
Richard I. Cullather NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Richard I. Cullather in
Current site
Google Scholar
PubMed
Close
,
Keith M. Hines Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio

Search for other papers by Keith M. Hines in
Current site
Google Scholar
PubMed
Close
,
Michelle Hofton University of Maryland, College Park, College Park, Maryland

Search for other papers by Michelle Hofton in
Current site
Google Scholar
PubMed
Close
,
Seiji Kato NASA Langley Research Center, Hampton, Virginia

Search for other papers by Seiji Kato in
Current site
Google Scholar
PubMed
Close
,
Dan Lubin Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Dan Lubin in
Current site
Google Scholar
PubMed
Close
,
Richard H. Moore NASA Langley Research Center, Hampton, Virginia

Search for other papers by Richard H. Moore in
Current site
Google Scholar
PubMed
Close
,
Michal Segal Rosenhaimer Bay Area Environmental Research Institute, Petaluma, California

Search for other papers by Michal Segal Rosenhaimer in
Current site
Google Scholar
PubMed
Close
,
Jens Redemann NASA Ames Research Center, Moffett Field, California

Search for other papers by Jens Redemann in
Current site
Google Scholar
PubMed
Close
,
Sebastian Schmidt Department of Atmospheric and Oceanic Sciences, and Laboratory for Astrophysics and Space Physics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Sebastian Schmidt in
Current site
Google Scholar
PubMed
Close
,
Ryan Scott Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Ryan Scott in
Current site
Google Scholar
PubMed
Close
,
Shi Song Department of Atmospheric and Oceanic Sciences, and Laboratory for Astrophysics and Space Physics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Shi Song in
Current site
Google Scholar
PubMed
Close
,
John D. Barrick NASA Langley Research Center, Hampton, Virginia

Search for other papers by John D. Barrick in
Current site
Google Scholar
PubMed
Close
,
J. Bryan Blair NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by J. Bryan Blair in
Current site
Google Scholar
PubMed
Close
,
David H. Bromwich Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio

Search for other papers by David H. Bromwich in
Current site
Google Scholar
PubMed
Close
,
Colleen Brooks SSAI, Greenbelt, Maryland

Search for other papers by Colleen Brooks in
Current site
Google Scholar
PubMed
Close
,
Gao Chen NASA Langley Research Center, Hampton, Virginia

Search for other papers by Gao Chen in
Current site
Google Scholar
PubMed
Close
,
Helen Cornejo SGT, Lanham, Maryland

Search for other papers by Helen Cornejo in
Current site
Google Scholar
PubMed
Close
,
Chelsea A. Corr Oak Ridge Associated Universities, Oak Ridge, Tennessee, and NASA Langley Research Center, Hampton, Virginia

Search for other papers by Chelsea A. Corr in
Current site
Google Scholar
PubMed
Close
,
Seung-Hee Ham SSAI, Hampton, Virginia

Search for other papers by Seung-Hee Ham in
Current site
Google Scholar
PubMed
Close
,
A. Scott Kittelman University of Maryland, College Park, College Pa

Search for other papers by A. Scott Kittelman in
Current site
Google Scholar
PubMed
Close
,
Scott Knappmiller Laboratory for Astrophysics and Space Physics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Scott Knappmiller in
Current site
Google Scholar
PubMed
Close
,
Samuel LeBlanc Oak Ridge Associated Universities, Oak Ridge, Tennessee, and NASA Ames Research Center, Moffett Field, California

Search for other papers by Samuel LeBlanc in
Current site
Google Scholar
PubMed
Close
,
Norman G. Loeb NASA Langley Research Center, Hampton, Virginia

Search for other papers by Norman G. Loeb in
Current site
Google Scholar
PubMed
Close
,
Colin Miller Laboratory for Astrophysics and Space Physics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Colin Miller in
Current site
Google Scholar
PubMed
Close
,
Louis Nguyen NASA Langley Research Center, Hampton, Virginia

Search for other papers by Louis Nguyen in
Current site
Google Scholar
PubMed
Close
,
Rabindra Palikonda SSAI, Hampton, Virginia

Search for other papers by Rabindra Palikonda in
Current site
Google Scholar
PubMed
Close
,
David Rabine NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by David Rabine in
Current site
Google Scholar
PubMed
Close
,
Elizabeth A. Reid Naval Research Laboratory, Monterey, California

Search for other papers by Elizabeth A. Reid in
Current site
Google Scholar
PubMed
Close
,
Jacqueline A. Richter-Menge Cold Regions Research and Engineering Laboratory, U.S. Army Corps of Engineers, Hanover, New Hampshire

Search for other papers by Jacqueline A. Richter-Menge in
Current site
Google Scholar
PubMed
Close
,
Peter Pilewskie Department of Atmospheric and Oceanic Sciences, and Laboratory for Astrophysics and Space Physics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Peter Pilewskie in
Current site
Google Scholar
PubMed
Close
,
Yohei Shinozuka Bay Area Environmental Research Institute, Petaluma, California

Search for other papers by Yohei Shinozuka in
Current site
Google Scholar
PubMed
Close
,
Douglas Spangenberg SSAI, Hampton, Virginia

Search for other papers by Douglas Spangenberg in
Current site
Google Scholar
PubMed
Close
,
Paul Stackhouse NASA Langley Research Center, Hampton, Virginia

Search for other papers by Paul Stackhouse in
Current site
Google Scholar
PubMed
Close
,
Patrick Taylor NASA Langley Research Center, Hampton, Virginia

Search for other papers by Patrick Taylor in
Current site
Google Scholar
PubMed
Close
,
K. Lee Thornhill SSAI, Hampton, Virginia

Search for other papers by K. Lee Thornhill in
Current site
Google Scholar
PubMed
Close
,
David van Gilst National Suborbital Education and Research Center, University of North Dakota, Grand Forks, North Dakota

Search for other papers by David van Gilst in
Current site
Google Scholar
PubMed
Close
, and
Edward Winstead SSAI, Hampton, Virginia

Search for other papers by Edward Winstead in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The National Aeronautics and Space Administration (NASA)’s Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE) acquired unique aircraft data on atmospheric radiation and sea ice properties during the critical late summer to autumn sea ice minimum and commencement of refreezing. The C-130 aircraft flew 15 missions over the Beaufort Sea between 4 and 24 September 2014. ARISE deployed a shortwave and longwave broadband radiometer (BBR) system from the Naval Research Laboratory; a Solar Spectral Flux Radiometer (SSFR) from the University of Colorado Boulder; the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) from the NASA Ames Research Center; cloud microprobes from the NASA Langley Research Center; and the Land, Vegetation and Ice Sensor (LVIS) laser altimeter system from the NASA Goddard Space Flight Center. These instruments sampled the radiant energy exchange between clouds and a variety of sea ice scenarios, including prior to and after refreezing began. The most critical and unique aspect of ARISE mission planning was to coordinate the flight tracks with NASA Cloud and the Earth’s Radiant Energy System (CERES) satellite sensor observations in such a way that satellite sensor angular dependence models and derived top-of-atmosphere fluxes could be validated against the aircraft data over large gridbox domains of order 100–200 km. This was accomplished over open ocean, over the marginal ice zone (MIZ), and over a region of heavy sea ice concentration, in cloudy and clear skies. ARISE data will be valuable to the community for providing better interpretation of satellite energy budget measurements in the Arctic and for process studies involving ice–cloud–atmosphere energy exchange during the sea ice transition period.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: On 18 July 2017 this article was revised to correct Fig. 12, which was omitted from the original publication.

CORRESPONDING AUTHOR: William Smith, william.l.smith@nasa.gov

Abstract

The National Aeronautics and Space Administration (NASA)’s Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE) acquired unique aircraft data on atmospheric radiation and sea ice properties during the critical late summer to autumn sea ice minimum and commencement of refreezing. The C-130 aircraft flew 15 missions over the Beaufort Sea between 4 and 24 September 2014. ARISE deployed a shortwave and longwave broadband radiometer (BBR) system from the Naval Research Laboratory; a Solar Spectral Flux Radiometer (SSFR) from the University of Colorado Boulder; the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) from the NASA Ames Research Center; cloud microprobes from the NASA Langley Research Center; and the Land, Vegetation and Ice Sensor (LVIS) laser altimeter system from the NASA Goddard Space Flight Center. These instruments sampled the radiant energy exchange between clouds and a variety of sea ice scenarios, including prior to and after refreezing began. The most critical and unique aspect of ARISE mission planning was to coordinate the flight tracks with NASA Cloud and the Earth’s Radiant Energy System (CERES) satellite sensor observations in such a way that satellite sensor angular dependence models and derived top-of-atmosphere fluxes could be validated against the aircraft data over large gridbox domains of order 100–200 km. This was accomplished over open ocean, over the marginal ice zone (MIZ), and over a region of heavy sea ice concentration, in cloudy and clear skies. ARISE data will be valuable to the community for providing better interpretation of satellite energy budget measurements in the Arctic and for process studies involving ice–cloud–atmosphere energy exchange during the sea ice transition period.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: On 18 July 2017 this article was revised to correct Fig. 12, which was omitted from the original publication.

CORRESPONDING AUTHOR: William Smith, william.l.smith@nasa.gov
Save
  • ASTM, 2005: Standard test method for calibration of a pyranometer using a pyrheliometer. ASTM G167–05, ASTM International, 21 pp, doi:10.1520/G0167-05.

    • Crossref
    • Export Citation
  • Badosa, J., J. Wood, P. Blanc, C. N. Long, L. Vuilleumier, D. Demengel, and M. Haeffelin, 2014: Solar irradiances measured using SPN1 radiometers: Uncertainties and clues for development. Atmos. Meas. Tech., 7, 42674283, doi:10.5194/amt-7-4267-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., M. P. Jerg, T. Wehr, S. Kato, D. P. Donovan, R. J. Hogan, 2011: A 3D cloud-construction algorithm for the EarthCARE satellite mission. Q. J. R. Meteor. Soc., 137, 10421058, doi:10.1002/qj.824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y. X. Hu, and Z. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteor. Climatol., 50, 10371056, doi:10.1175/2010JAMC2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, J. B., D. L. Rabine, and M. A. Hofton, 1999: The Laser Vegetation Imaging Sensor (LVIS): A medium-altitude, digitization-only, airborne laser altimeter for mapping vegetation and topography. ISPRS J. Photogramm. Remote Sens., 54, 115122, doi:10.1016/S0924-2716(99)00002-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bucholtz, A., R. T. Bluth, B. Kelly, S. Taylor, K. Batson, A. W. Sarto, T. P. Tooman, and R. F. McCoy Jr., 2008: The Stabilized Radiometer Platform (STRAP)—An actively stabilized horizontally level platform for improved aircraft irradiance measurements. J. Atmos. Oceanic Technol., 25, 21612175, doi:10.1175/2008JTECHA1085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, E. N., J. J. Cassano, M. E. Higgins, and M. C. Serreze, 2014: Atmospheric impacts of an Arctic sea ice minimum as seen in the Community Atmosphere Model. Int. J. Climatol., 34, 766779, doi:10.1002/joc.3723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, F.-L., P. Minnis, B. Lin, M. Khaiyer, R. Palikonda, and D. Spangenberg, 2010a: A modified method for inferring upper troposphere cloud top height using the GOES 12 imager 10.7 and 13.3 μm data. J. Geophys. Res., 115, D06208, doi:10.1029/2009JD012304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, F.-L., P. Minnis, J. K. Ayers, M. J. McGill, R. Palikonda, D. A. Spangenberg, W. L. Smith Jr., and C. R. Yost, 2010b: Evaluation of satellite-based upper troposphere cloud top height retrievals in multilayer cloud conditions during TC4. J. Geophys. Res., 115, D00J065, doi:10.1029/2009JD013305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coddington, O. M., and Coauthors, 2008: Aircraft measurements of spectral surface albedo and its consistency with ground-based and space-borne observations. J. Geophys. Res., 113, D17209, doi:10.1029/2008JD010089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coddington, O. M., and Coauthors, 2010: Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing. J. Geophys. Res., 115, D10211, doi:10.1029/2009JD012829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coddington, O. M., P. Pilewskie, K. S. Schmidt, P. J. McBride, and T. Vukicevic, 2013: Characterizing a new surface-based shortwave cloud retrieval technique, based on transmitted radiance for soil and vegetated surface types. Atmosphere, 4, 4871, doi:10.3390/atmos4010048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and G. F. Herman, 1985: Infrared radiative properties of summertime Arctic stratus clouds. J. Climate Appl. Meteor., 24, 525538, doi:10.1175/1520-0450(1985)024<0525:IRPOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81, 529, doi:10.1175/1520-0477(2000)081<0005:FACE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delta-T Devices, 2007: User manual for the Sunshine pyranometer, type SPN-1. 43 pp. [Available online at ftp://ftp.dynamax.com/manuals/SPN1_Manual.pdf.]

  • Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090, doi:10.1175/JTECH-D-12-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunagan, S. E., and Coauthors, 2013: Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument technology. Remote Sens., 5, 38723895, doi:10.3390/rs5083872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • English, J. M., J. E. Kay, A. Gettelman, X. Liu, Y. Wang, Y. Zhang, and H. Chepfer, 2014: Contribution of clouds, surface albedos and mixed-phase ice nucleation schemes to Arctic radiation biases in CAM5. J. Climate, 27, 51745197, doi:10.1175/JCLI-D-13-00608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., A. S. Ackerman, G. McFarquhar, G. Zhang, M. R. Poellot, P. J. DeMott, A. J. Prenni, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results. J. Geophys. Res., 112, D24202, doi:10.1029/2007JD008646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., B. van Diedenhoven, A. S. Ackerman, A. Avramov, A. Mrowiec, H. Morrison, P. Zuidema, and M. D. Shupe, 2012: A FIRE-ACE/SHEBA case study of mixed-phase Arctic boundary layer clouds: Entrainment rate limitations on rapid primary ice nucleation processes. J. Atmos. Sci., 69, 365389, doi:10.1175/JAS-D-11-052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and P. Ceppi, 2014: Trends in the CERES dataset, 2000–13: The effect of sea ice and jet shifts and comparison to climate models. J. Climate, 27, 24442456, doi:10.1175/JCLI-D-13-00411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. F., and J. A. Curry, 1984: Observational and theoretical studies of solar radiation in Arctic stratus clouds. J. Climate Appl. Meteor., 23, 524, doi:10.1175/1520-0450(1984)023<0005:OATSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, L. Bai, C. M. Bitz, J. G. Powers, and K. W. Manning, 2015: Sea ice enhancements to Polar WRF. Mon. Wea. Rev., 143, 23632385, doi:10.1175/MWR-D-14-00344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofton, M. A., J. B. Blair, S. B. Luthcke, and D. L. Rabine, 2008: Assessing the performance of 20–25 m footprint waveform lidar data collected in ICESat data corridors in Greenland. Geophys. Res. Lett., 35, L24501, doi:10.1029/2008GL035774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., C. W. Fairall, M. D. Shupe, P. O. G. Persson, E. L Andreas, P. S. Guest, and R. E. Moritz, 2002: An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res., 107, 8039, doi:10.1029/2000JC000439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Itterly, K., and P. C. Taylor, 2014: Evaluation of the tropical TOA flux diurnal cycle in MERRA and ERA-Interim retrospective analyses. J. Climate, 27, 47814796, doi:10.1175/JCLI-D-13-00737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kassianov, E., C. Flynn, J. Redemann, B. Schmid, P. B. Russell, and A. Sinyuk, 2012: Initial assessment of the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)-based aerosol retrieval: Sensitivity study. Atmosphere, 3, 495521, doi:10.3390/atmos3040495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, F. G. Rose, D. R. Doelling, D. A. Rutan, T. E. Caldwell, L. Yu, and R. A. Weller, 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 27192740, doi:10.1175/JCLI-D-12-00436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kindel, B. C., P. Pilewskie, K. S. Schmidt, O. Coddington, and M. D. King, 2011: Solar spectral absorption by marine stratus clouds: Measurements and modeling. J. Geophys. Res., 116, D10203, doi:10.1029/2010JD015071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kipp & Zonen, 2001: CG4 pyrgeometer: Instruction manual. 64 pp. [Available online at www.kippzonen.com/Download/33/CG-4-Manual.]

  • Kipp & Zonen, 2004: CM22 precision pyranometer: Instruction manual. 65 pp. [Available online at www.kippzonen.com/Download/55/CM-22-Pyranometer-Manual.]

  • LeBlanc, S. E., P. Pilewskie, K. S. Schmidt, and O. Coddington, 2015: A spectral method for discriminating thermodynamic phase and retrieving cloud optical thickness and effective radius using transmitted solar radiance spectra. Atmos. Meas. Tech., 8, 13611383, doi:10.5194/amt-8-1361-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., K. J. Priestley, D. P. Kratz, E. B. Geier, R. N. Green, B. A. Wielicki, P. O’Rawe Hinton, and S. K. Nolan, 2001: Determination of unfiltered radiances from the Clouds and the Earth’s Radiant Energy System instrument. J. Appl. Meteor., 40, 822835, doi:10.1175/1520-0450(2001)040<0822:DOURFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, K. Loukachine, and N. Manalo-Smith, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338, doi:10.1175/JTECH1712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, W. Su, T. Wong, F. G. Rose, D. R. Doelling, J. R. Norris, and X. Huang, 2012: Advances in understanding top-of-atmosphere radiation variability from satellite observations. Surv. Geophys., 33, 359385, doi:10.1007/s10712-012-9175-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C. N., A. Bucholtz, H. Jonsson, B. Schmid, A. Vogelmann, and J. Wood, 2010: A method of correcting for tilt from horizontal in downwelling shortwave irradiance measurements on moving platforms. Open Atmos. Sci. J., 4, 7887, doi:10.2174/1874282301004010078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubin, D., and A. M. Vogelmann, 2011: The influence of mixed-phase clouds on surface shortwave irradiance during the Arctic spring. J. Geophys. Res., 116, D00T05, doi:10.1029/2011JD015761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, P. J., K. S. Schmidt, P. Pilewskie, A. Walther, A. K. Heidinger, D. E. Wolfe, C. W. Fairall, and S. Lance, 2012: CalNex cloud properties retrieved from a ship-based spectrometer and comparisons with satellite and aircraft retrieved cloud properties. J. Geophys. Res., 117, D00V23, doi:10.1029/2012JD017624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, doi:10.1109/TGRS.2011.2144601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A. M., L. L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, doi:10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., and C. Polashenski, 2012: Albedo evolution of seasonal Arctic sea ice. Geophys. Res. Lett., 39, L08501, doi:10.1029/2012GL051432.

  • Perovich, D. K., J. A. Richter-Menge, K. F. Jones, and B. Light, 2008: Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35, L11501, doi:10.1029/2008GL034007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilewskie, P. J., and Coauthors, 2003: Solar spectral radiative forcing during the Southern African Regional Science Initiative. J. Geophys. Res., 108, 8486, doi:10.1029/2002JD002411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., C. P. Batstone, R. J. P. Hofmann, K. E. Taylor, and P. J. Glecker, 2008: Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models. J. Geophys. Res., 113, D14209, doi:10.1029/2007JD009334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., 1998: Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci., 55, 20162038, doi:10.1175/1520-0469(1998)055<2016:AMPCBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GOES-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. M. J. Suarez, Ed., Technical Report Series on Global Modeling and Data Assimilation, Vol. 27, NASA Tech. Memo. NASA/TM-2008–104606, 101 pp. [Available online at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120011955.pdf.]

  • Rutan, D. A., S. Kato, D. R. Doelling, F. G. Rose, L. T. Nguyen, T. E. Caldwell, and N. G. Loeb, 2015: CERES synoptic product: Methodology and validation of surface radiant flux. J. Atmos. Oceanic Technol., 32, 11211143, doi:10.1175/JTECH-D-14-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, K. S., and P. Pilewskie, 2012: Airborne measurements of spectral shortwave radiation in cloud and aerosol remote sensing and energy budget studies. Light Scattering Reviews 6: Light Scattering and Remote Sensing of Atmosphere and Surface, A. A. Kokhanovsky, Ed., Springer, 239–288, doi:10.1007/978-3-642-15531-4_6.

    • Crossref
    • Export Citation
  • Schmidt, K. S., and Coauthors, 2010: Apparent absorption of solar spectral irradiance in heterogeneous ice clouds. J. Geophys. Res., 115, D00J22, doi:10.1029/2009JD013124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal Rosenhaimer, M., P. B. Russell, J. M. Livingston, S. Ramachandran, J. Redemann, and B. A. Baum, 2013: Retrieval of cirrus properties by Sun photometry: A new perspective on an old issue. J. Geophys. Res. Atmos., 118, 45034520, doi:10.1002/jgrd.50185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal Rosenhaimer, M., and Coauthors, 2014: Tracking elevated pollution layers with a newly developed hyperspectral Sun/Sky spectrometer (4STAR): Results from the TCAP 2012 and 2013 campaigns. J. Geophys. Res. Atmos., 119, 26112628, doi:10.1002/2013JD020884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinozuka, Y., and Coauthors, 2013: Hyperspectral aerosol optical depths from TCAP flights. J. Geophys. Res., 118, 12 18012 194, doi:10.1002/2013JD020596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiobara, M., and S. Asano, 1994: Estimation of cirrus optical thickness from sun photometer measurements. J. Appl. Meteor., 33, 672681, doi:10.1175/1520-0450(1994)033<0672:EOCOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, S., and Coauthors, 2016: The spectral signature of cloud spatial structure in shortwave irradiance. Atmos. Chem. Phys., 16, 13 79113 806, doi:10.5194/acp-16-13791-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., and R. S. Schemenauer, 1982: Calibrations of Johnson-Williams liquid water content meters in a high-speed icing tunnel. J. Appl. Meteor., 21, 98108, doi:10.1175/1520-0450(1982)021<0098:COJWLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Maslanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 11, 10051027, doi:10.1007/s10584-011-0101-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., T. Markus, L. Boisvert, J. Miller, and A. Barrett, 2014: Changes in Arctic melt season and implications for sea ice loss. Geophys. Res. Lett., 41, 12161225, doi:10.1002/2013GL058951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, W., J. Corbett, Z. Eitzen, and L. Liang, 2015a: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Methodology. Atmos. Meas. Tech., 8, 611632, doi:10.5194/amt-8-611-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, W., J. Corbett, Z. Eitzen, and L. Liang, 2015b: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from the CERES instruments: Validation. Atmos. Meas. Tech., 8, 32973313, doi:10.5194/amt-8-3297-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., J. Sedlar, and M. D. Shupe, 2008: How well do regional climate models reproduce radiation and clouds in the Arctic? An evaluation of ARCMIP simulations. J. Appl. Meteor. Climatol., 47, 24052422, doi:10.1175/2008JAMC1845.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and Coauthors, 2012: Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS). Atmos. Chem. Phys., 12, 68636889, doi:10.5194/acp-12-6863-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinde, J., and Coauthors, 2007: The Mixed-Phase Arctic Cloud Experiment. Bull. Amer. Meteor. Soc., 88, 205221, doi:10.1175/BAMS-88-2-205.

  • Vihma, T., and Coauthors, 2014: Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: A review. Atmos. Chem. Phys., 14, 94039450, doi:10.5194/acp-14-9403-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and W. Su, 2013: Evaluating and understanding top of the atmosphere cloud radiative effects in Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) models using satellite observations. J. Geophys. Res. Atmos., 118, 683699, doi:10.1029/2012JD018619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., D. Müller, D. Schell, and J. Heintzenberg, 2001: An airborne spectral albedometer with active horizontal stabilization. J. Atmos. Oceanic Technol., 18, 18561866, doi:10.1175/1520-0426(2001)018<1856:AASAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and Coauthors, 2013: Atmospheric radiation measurements. Airborne Measurements for Environmental Research: Methods and Instruments, M. Wendisch and J.-L. Brenguier, Eds., Wiley, 343–412.

    • Crossref
    • Export Citation
  • Zhang, J., R. Lindsay, M. Steele, and A. Schweiger, 2008: What drove the dramatic retreat of arctic sea ice during summer 2007? Geophys. Res. Lett., 35, L11505, doi:10.1029/2008GL034005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J.-L., F. Liu, W. Tao, J. Krieger, M. Shulski, and X. Zhang, 2016: Mesoscale climatology and variation of surface winds over the Chukchi–Beaufort coastal areas. J. Climate, 29, 27212739, doi:10.1175/JCLI-D-15-0436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1039 249 9
PDF Downloads 530 105 5