The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment: Overview and Selected Highlights

Bernadett Weinzierl Universität Wien (UNIVIE), Fakultät für Physik, Aerosolphysik und Umweltphysik, Wien, Austria, and Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by Bernadett Weinzierl in
Current site
Google Scholar
PubMed
Close
,
A. Ansmann Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Search for other papers by A. Ansmann in
Current site
Google Scholar
PubMed
Close
,
J. M. Prospero University of Miami, Miami, Florida

Search for other papers by J. M. Prospero in
Current site
Google Scholar
PubMed
Close
,
D. Althausen Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Search for other papers by D. Althausen in
Current site
Google Scholar
PubMed
Close
,
N. Benker Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, Darmstadt, Germany

Search for other papers by N. Benker in
Current site
Google Scholar
PubMed
Close
,
F. Chouza Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by F. Chouza in
Current site
Google Scholar
PubMed
Close
,
M. Dollner Universität Wien (UNIVIE), Fakultät für Physik, Aerosolphysik und Umweltphysik, Wien, Austria, and Ludwig-Maximilians-Universität (LMU), Meteorologisches Institut, München, Germany

Search for other papers by M. Dollner in
Current site
Google Scholar
PubMed
Close
,
D. Farrell Caribbean Institute for Meteorology and Hydrology (CIMH), Bridgetown, Barbados

Search for other papers by D. Farrell in
Current site
Google Scholar
PubMed
Close
,
W. K. Fomba Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Search for other papers by W. K. Fomba in
Current site
Google Scholar
PubMed
Close
,
V. Freudenthaler Ludwig-Maximilians-Universität (LMU), Meteorologisches Institut, München, Germany

Search for other papers by V. Freudenthaler in
Current site
Google Scholar
PubMed
Close
,
J. Gasteiger Universität Wien (UNIVIE), Fakultät für Physik, Aerosolphysik und Umweltphysik, Wien, Austria, and Ludwig-Maximilians-Universität (LMU), Meteorologisches Institut, München, Germany

Search for other papers by J. Gasteiger in
Current site
Google Scholar
PubMed
Close
,
S. Groß Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by S. Groß in
Current site
Google Scholar
PubMed
Close
,
M. Haarig Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Search for other papers by M. Haarig in
Current site
Google Scholar
PubMed
Close
,
B. Heinold Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Search for other papers by B. Heinold in
Current site
Google Scholar
PubMed
Close
,
K. Kandler Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, Darmstadt, Germany

Search for other papers by K. Kandler in
Current site
Google Scholar
PubMed
Close
,
T. B. Kristensen Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Search for other papers by T. B. Kristensen in
Current site
Google Scholar
PubMed
Close
,
O. L. Mayol-Bracero Department of Environmental Science, University of Puerto Rico, San Juan, Puerto Rico

Search for other papers by O. L. Mayol-Bracero in
Current site
Google Scholar
PubMed
Close
,
T. Müller Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Search for other papers by T. Müller in
Current site
Google Scholar
PubMed
Close
,
O. Reitebuch Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by O. Reitebuch in
Current site
Google Scholar
PubMed
Close
,
D. Sauer Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by D. Sauer in
Current site
Google Scholar
PubMed
Close
,
A. Schäfler Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by A. Schäfler in
Current site
Google Scholar
PubMed
Close
,
K. Schepanski Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Search for other papers by K. Schepanski in
Current site
Google Scholar
PubMed
Close
,
A. Spanu Universität Wien (UNIVIE), Fakultät für Physik, Aerosolphysik und Umweltphysik, Wien, Austria, and Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by A. Spanu in
Current site
Google Scholar
PubMed
Close
,
I. Tegen Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Search for other papers by I. Tegen in
Current site
Google Scholar
PubMed
Close
,
C. Toledano Grupo de Óptica Atmosférica, Universidad de Valladolid, Valladolid, Spain

Search for other papers by C. Toledano in
Current site
Google Scholar
PubMed
Close
, and
A. Walser Ludwig-Maximilians-Universität (LMU), Meteorologisches Institut, München, and Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by A. Walser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

North Africa is the world’s largest source of dust, a large part of which is transported across the Atlantic to the Caribbean and beyond where it can impact radiation and clouds. Many aspects of this transport and its climate effects remain speculative. The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE; www.pa.op.dlr.de/saltrace) linked ground-based and airborne measurements with remote sensing and modeling techniques to address these issues in a program that took place in 2013/14. Specific objectives were to 1) characterize the chemical, microphysical, and optical properties of dust in the Caribbean, 2) quantify the impact of physical and chemical changes (“aging”) on the radiation budget and cloud microphysical processes, 3) investigate the meteorological context of transatlantic dust transport, and 4) assess the roles of removal processes during transport.

SALTRACE was a German-led initiative involving scientists from Europe, Cabo Verde, the Caribbean, and the United States. The Falcon research aircraft of the Deutsches Zentrum für Luft- und Raumfahrt (DLR), equipped with a comprehensive aerosol and wind lidar payload, played a central role. Several major dust outbreaks were studied with 86 h of flight time under different conditions, making it by far the most extensive investigation on long-range transported dust ever made.

This article presents an overview of SALTRACE and highlights selected results including data from transatlantic flights in coherent air masses separated by more than 4,000-km distance that enabled measurements of transport effects on dust properties. SALTRACE will improve our knowledge on the role of mineral dust in the climate system and provide data for studies on dust interactions with clouds, radiation, and health.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Bernadett Weinzierl, bernadett.weinzierl@univie.ac.at

A supplement to this article is available online (10.1175/BAMS-D-15-00142.2)

Publisher’s Note: On 25 July 2017 this article was revised to correct an in-text citation for Walser et al. (2017).

Abstract

North Africa is the world’s largest source of dust, a large part of which is transported across the Atlantic to the Caribbean and beyond where it can impact radiation and clouds. Many aspects of this transport and its climate effects remain speculative. The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE; www.pa.op.dlr.de/saltrace) linked ground-based and airborne measurements with remote sensing and modeling techniques to address these issues in a program that took place in 2013/14. Specific objectives were to 1) characterize the chemical, microphysical, and optical properties of dust in the Caribbean, 2) quantify the impact of physical and chemical changes (“aging”) on the radiation budget and cloud microphysical processes, 3) investigate the meteorological context of transatlantic dust transport, and 4) assess the roles of removal processes during transport.

SALTRACE was a German-led initiative involving scientists from Europe, Cabo Verde, the Caribbean, and the United States. The Falcon research aircraft of the Deutsches Zentrum für Luft- und Raumfahrt (DLR), equipped with a comprehensive aerosol and wind lidar payload, played a central role. Several major dust outbreaks were studied with 86 h of flight time under different conditions, making it by far the most extensive investigation on long-range transported dust ever made.

This article presents an overview of SALTRACE and highlights selected results including data from transatlantic flights in coherent air masses separated by more than 4,000-km distance that enabled measurements of transport effects on dust properties. SALTRACE will improve our knowledge on the role of mineral dust in the climate system and provide data for studies on dust interactions with clouds, radiation, and health.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Bernadett Weinzierl, bernadett.weinzierl@univie.ac.at

A supplement to this article is available online (10.1175/BAMS-D-15-00142.2)

Publisher’s Note: On 25 July 2017 this article was revised to correct an in-text citation for Walser et al. (2017).

Supplementary Materials

    • Supplemental Materials (PDF 560.52 KB)
Save
  • Abdelkader, M., S. Metzger, R. E. Mamouri, M. Astitha, L. Barrie, Z. Levin, and J. Lelieveld, 2015: Dust–air pollution dynamics over the eastern Mediterranean. Atmos. Chem. Phys., 15, 91739189, doi:10.5194/acp-15-9173-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., and Coauthors, 2011: Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: What have we learned? Tellus, 63B, 403429, doi:10.1111/j.1600-0889.2011.00555.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, J. D., and Coauthors, 2013: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355358, doi:10.1038/nature12278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert, 2007: Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos. Chem. Phys., 7, 8195, doi:10.5194/acp-7-81-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Begue, N., P. Tulet, J. Pelon, B. Aouizerats, A. Berger, and A. Schwarzenboeck, 2015: Aerosol processing and CCN formation of an intense Saharan dust plume during the EUCAARI 2008 campaign. Atmos. Chem. Phys., 15, 34973516, doi:10.5194/acp-15-3497-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brammer, A., and C. D. Thorncroft, 2015: Variability and evolution of African easterly wave structures and their relationship with tropical cyclogenesis over the eastern Atlantic. Mon. Wea. Rev., 143, 49754995, doi:10.1175/MWR-D-15-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2010: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 20072037, doi:10.1175/2009MWR3135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burton, S. P., and Coauthors, 2012: Aerosol classification using airborne High Spectral Resolution Lidar measurements—Methodology and examples. Atmos. Meas. Tech., 5, 7398, doi:10.5194/amt-5-73-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and J. M. Prospero, 1972: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteor., 11, 283297, doi:10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chouza, F., O. Reitebuch, S. Groß, S. Rahm, V. Freudenthaler, C. Toledano, and B. Weinzierl, 2015: Retrieval of aerosol backscatter and extinction from airborne coherent Doppler wind lidar measurements. Atmos. Meas. Tech., 8, 29092926, doi:10.5194/amt-8-2909-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chouza, F., O. Reitebuch, A. Benedetti, and B. Weinzierl, 2016a: Saharan dust long-range transport across the Atlantic studied by an airborne Doppler wind lidar and the MACC model. Atmos. Chem. Phys., 16, 11 58111 600, doi:10.5194/acp-16-11581-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chouza, F., O. Reitebuch, M. Jähn, S. Rahm, and B. Weinzierl, 2016b: Vertical wind retrieved by airborne lidar and analysis of island induced gravity waves in combination with numerical models and in situ particle measurements. Atmos. Chem. Phys., 16, 46754692, doi:10.5194/acp-16-4675-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, R. J., 2016: Ice in Clouds Experiment—Dust: A field campaign to study aerosol-cloud interactions. Eighth Symp. on Aerosol–Cloud–Climate Interactions, New Orleans, LA, Amer. Meteor. Soc., J5.3. [Available online at https://ams.confex.com/ams/96Annual/webprogram/Paper282066.html.]

  • Dahlkötter, F., and Coauthors, 2014: The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe—Aerosol properties and black carbon mixing state. Atmos. Chem. Phys., 14, 61116137, doi:10.5194/acp-14-6111-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeFlorio, M. J., I. D. Goodwin, D. R. Cayan, A. J. Miller, S. J. Ghan, D. W. Pierce, L. M. Russell, and B. Singh, 2016: Interannual modulation of subtropical Atlantic boreal summer dust variability by ENSO. Climate Dyn., 46, 585599, doi:10.1007/s00382-015-2600-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denjean, C., and Coauthors, 2015: Long-range transport across the Atlantic in summertime does not enhance the hygroscopicity of African mineral dust. Geophys. Res. Lett., 42, 78357843, doi:10.1002/2015GL065693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denjean, C., and Coauthors, 2016: Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean. Atmos. Chem. Phys., 16, 10811104, doi:10.5194/acp-16-1081-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, O. M., N. Riemer, and S. Hameed, 2008: Saharan mineral dust transport into the Caribbean: Observed atmospheric controls and trends. J. Geophys. Res., 113, D07211, doi:10.1029/2007JD009171.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353365, doi:10.1175/BAMS-85-3-353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., A. K. Heidinger, and P. Knippertz, 2006: Analysis of winter dust activity off the coast of West Africa using a new 24-year over-water advanced very high resolution radiometer satellite dust climatology. J. Geophys. Res., 111, D12210, doi:10.1029/2005JD006336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., G. R. Foltz, D. X. Zhang, and D. J. Vimont, 2011: Influence of African dust on ocean–atmosphere variability in the tropical Atlantic. Nat. Geosci., 4, 762765, doi:10.1038/ngeo1276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., C. Flamant, M. Gaetani, and F. Guichard, 2016: The past, present and future of African dust. Nature, 531, 493495, doi:10.1038/nature17149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzgerald, E., A. P. Ault, M. D. Zauscher, O. L. Mayol-Bracero, and K. A. Prather, 2015: Comparison of the mixing state of long-range transported Asian and African mineral dust. Atmos. Environ., 115, 1925, doi:10.1016/j.atmosenv.2015.04.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Formenti, P., S. Caquineau, K. Desboeufs, A. Klaver, S. Chevaillier, E. Journet, and J. L. Rajot, 2014: Mapping the physico-chemical properties of mineral dust in western Africa: Mineralogical composition. Atmos. Chem. Phys., 14, 10 66310 686, doi:10.5194/acp-14-10663-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freudenthaler, V., and Coauthors, 2009: Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus, 61B, 165179, doi:10.1111/j.1600-0889.2008.00396.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freudenthaler, V., M. Seefeldner, S. Groß, and U. Wandinger, 2016: Accuracy of linear depolarisation ratios in clean air ranges measured with POLIS-6 at 355 and 532 NM. EPJ Web Conf., 119, 25013, doi:10.1051/epjconf/201611925013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garimella, S., Y. W. Huang, J. S. Seewald, and D. J. Cziczo, 2014: Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: The significance of soluble material. Atmos. Chem. Phys., 14, 60036019, doi:10.5194/acp-14-6003-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasteiger, J., S. Groß, B. Weinzierl, D. Sauer, and V. Freudenthaler, 2017: Particle settling and convective mixing in the Saharan Air Layer as seen from an integrated model, lidar, and in-situ perspective. Atmos. Chem. Phys., 17, 297311, doi:10.5194/acp-17-297-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginoux, P., J. M. Prospero, O. Torres, and M. Chin, 2004: Long-term simulation of global dust distribution with the GOCART model: Correlation with North Atlantic Oscillation. J. Environ. Model. Software, 19, 113128, doi:10.1016/S1364-8152(03)00114-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gioda, A., O. L. Mayol-Bracero, F. N. Scatena, K. C. Weathers, V. L. Mateus, and W. H. McDowell, 2013: Chemical constituents in clouds and rainwater in the Puerto Rican rainforest: Potential sources and seasonal drivers. Atmos. Environ., 68, 208220, doi:10.1016/j.atmosenv.2012.11.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goudie, A. S., 2014: Desert dust and human health disorders. Environ. Int., 63, 101113, doi:10.1016/j.envint.2013.10.011.

  • Groß, S., M. Tesche, V. Freudenthaler, C. Toledano, M. Wiegner, A. Ansmann, D. Althausen, and M. Seefeldner, 2011: Characterization of Saharan dust, marine aerosols and mixtures of biomass burning aerosols and dust by means of multi-wavelength depolarization and Raman measurements during SAMUM-2. Tellus, 63B, 706724, doi:10.1111/j.1600-0889.2011.00556.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groß, S., M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, 2013: Aerosol classification by airborne high spectral resolution lidar observations. Atmos. Chem. Phys., 12, 25 98326 028, doi:10.5194/acpd-12-25983-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groß, S., V. Freudenthaler, K. Schepanski, C. Toledano, A. Schäfler, A. Ansmann, and B. Weinzierl, 2015: Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements. Atmos. Chem. Phys., 15, 11 06711 080, doi:10.5194/acp-15-11067-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groß, S., J. Gasteiger, V. Freudenthaler, T. Müller, D. Sauer, C. Toledano, and A. Ansmann, 2016: Saharan dust contribution to the Caribbean summertime boundary layer—A lidar study during SALTRACE. Atmos. Chem. Phys., 16, 11 53511 546, doi:10.5194/acp-16-11535-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarig, M., D. Althausen, A. Ansmann, A. Klepel, H. Baars, R. Engelmann, S. Groß, and V. Freudenthaler, 2016: Measurement of the linear depolarization ratio of aged dust at three wavelengths (355, 532 and 1064 nm) simultaneously over Barbados. EPJ Web Conf., 119, 18009, doi:10.1051/epjconf/201611918009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hankes, I., Z. Wang, G. Zhang, and C. Fritz, 2015: Merger of African easterly waves and formation of Cape Verde storms. Quart. J. Roy. Meteor. Soc., 141, 13061319, doi:10.1002/qj.2439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatch, C. D., K. M. Gierlus, J. D. Schuttlefield, and V. H. Grassian, 2008: Water adsorption and cloud condensation nuclei activity of calcite and calcite coated with model humic and fulvic acids. Atmos. Environ., 42, 56725684, doi:10.1016/j.atmosenv.2008.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and Coauthors, 2008: Overview of the dust and biomass-burning experiment and African Monsoon Multidisciplinary Analysis special observing period-0. J. Geophys. Res., 113, D00C17, doi:10.1029/2008JD010077.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and Coauthors, 2011: Motivation, rationale and key results from the GERBILS Saharan dust measurement campaign. Quart. J. Roy. Meteor. Soc., 137, 11061116, doi:10.1002/qj.797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinold, B., J. Helmert, O. Hellmuth, R. Wolke, A. Ansmann, B. Marticorena, B. Laurent, and I. Tegen, 2007: Regional modeling of Saharan dust events using LM-MUSCAT: Model description and case studies. J. Geophys. Res., 112, D11204, doi:10.1029/2006JD007443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinold, B., and Coauthors, 2011: Regional modelling of Saharan dust and biomass-burning smoke. Part I: Model description and evaluation. Tellus, 63B, 781799, doi:10.1111/j.1600-0889.2011.00570.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heintzenberg, J. O. S. T., 2009: The SAMUM-1 experiment over southern Morocco: Overview and introduction. Tellus, 61B, 211, doi:10.1111/j.1600-0889.2008.00403.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinds, W. C., 1999: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. 2nd ed. Wiley, 504 pp.

  • Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 98179854, doi:10.5194/acp-12-9817-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J. F., C. D. Zhang, and J. M. Prospero, 2010: African dust outbreaks: A satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. J. Geophys. Res., 115, D05202, doi:10.1029/2009JD012516.

    • Search Google Scholar
    • Export Citation
  • Huneeus, N., and Coauthors, 2011: Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys., 11, 77817816, doi:10.5194/acp-11-7781-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jähn, M., D. Muñoz-Esparza, F. Chouza, O. Reitebuch, O. Knoth, M. Haarig, and A. Ansmann, 2016: Investigations of boundary layer structure, cloud characteristics and vertical mixing of aerosols at Barbados with large eddy simulations. Atmos. Chem. Phys., 16, 651674, doi:10.5194/acp-16-651-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jickells, T. D., and Coauthors, 2005: Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308, 6771, doi:10.1126/science.1105959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, E., B. Albrecht, J. M. Prospero, H. H. Jonsson, and S. M. Kreidenweis, 2013: Vertical structure of aerosols, temperature, and moisture associated with an intense African dust event observed over the eastern Caribbean. J. Geophys. Res. Atmos., 118, 46234643, doi:10.1002/jgrd.50352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaaden, N., and Coauthors, 2009: State of mixing, shape factor, number size distribution, and hygroscopic growth of the Saharan anthropogenic and mineral dust aerosol at Tinfou, Morocco. Tellus, 61B, 5163, doi:10.1111/j.1600-0889.2008.00388.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kandler, K., and Coauthors, 2009: Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus, 61B, 3250, doi:10.1111/j.1600-0889.2008.00385.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kandler, K., and Coauthors, 2011: Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: Particle chemistry, shape, mixing state and complex refractive index. Tellus, 63B, 475496, doi:10.1111/j.1600-0889.2011.00550.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanitz, T., R. Engelmann, B. Heinold, H. Baars, A. Skupin, and A. Ansmann, 2014: Tracking the Saharan Air Layer with shipborne lidar across the tropical Atlantic. Geophys. Res. Lett., 41, 10441050, doi:10.1002/2013GL058780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and T. N. Carlson, 1988: Analysis and numerical simulations of the Saharan Air Layer and its effect on easterly wave disturbances. J. Atmos. Sci., 45, 31023136, doi:10.1175/1520-0469(1988)045<3102:AANSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, B., G. Stenchikov, B. Weinzierl, S. Kalenderski, and S. Osipov, 2015: Dust plume formation in the free troposphere and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa. Tellus, 67B, 27170, doi:10.3402/tellusb.v67.27170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, doi:10.1175/JAS3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and M. C. Todd, 2010: The central west Saharan dust hot spot and its relation to African easterly waves and extratropical disturbances. J. Geophys. Res., 115, D12117, doi:10.1029/2009JD012819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristensen, T. B., T. Müller, K. Kandler, N. Benker, M. Hartmann, J. M. Prospero, A. Wiedensohler, and F. Stratmann, 2016: Properties of cloud condensation nuclei (CCN) in the trade wind marine boundary layer of the western North Atlantic. Atmos. Chem. Phys., 16, 26752688, doi:10.5194/acp-16-2675-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P., I. N. Sokolik, and A. Nenes, 2011: Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals. Atmos. Chem. Phys., 11, 35273541, doi:10.5194/acp-11-3527-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, Z., E. Ganor, and V. Gladstein, 1996: The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J. Appl. Meteor., 35, 15111523, doi:10.1175/1520-0450(1996)035<1511:TEODPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lieke, K., and Coauthors, 2011: Particle chemical properties in the vertical column based on aircraft observations in the vicinity of Cape Verde Islands. Tellus, 63B, 497511, doi:10.1111/j.1600-0889.2011.00553.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2008: CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport. J. Geophys. Res., 113, D07207, doi:10.1029/2007JD008878.

    • Search Google Scholar
    • Export Citation
  • Maher, B. A., J. M. Prospero, D. Mackie, D. Gaiero, P. P. Hesse, and Y. Balkanski, 2010: Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Sci. Rev., 99, 6197, doi:10.1016/j.earscirev.2009.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N., S. Albani, J. F. Kok, S. Engelstaeder, R. Scanza, D. S. Ward, and M. G. Flanner, 2014: The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res., 15, 5371, doi:10.1016/j.aeolia.2013.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mamouri, R. E., and A. Ansmann, 2015: Estimated desert-dust ice nuclei profiles from polarization lidar: Methodology and case studies. Atmos. Chem. Phys., 15, 34633477, doi:10.5194/acp-15-3463-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maring, H., D. L. Savoie, M. A. Izaguirre, L. Custals, and J. S. Reid, 2003: Mineral dust aerosol size distribution change during atmospheric transport. J. Geophys. Res., 108, 8592, doi:10.1029/2002JD002536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McConnell, C. L., and Coauthors, 2008: Seasonal variations of the physical and optical characteristics of Saharan dust: Results from the Dust Outflow and Deposition to the Ocean (DODO) experiment. J. Geophys. Res., 113, D14505, doi:10.1029/2007JD009606.

    • Search Google Scholar
    • Export Citation