Recent Advances in Satellite Data Rescue

Paul Poli European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Paul Poli in
Current site
Google Scholar
PubMed
Close
,
Dick P. Dee European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Dick P. Dee in
Current site
Google Scholar
PubMed
Close
,
Roger Saunders Met Office, Exeter, United Kingdom

Search for other papers by Roger Saunders in
Current site
Google Scholar
PubMed
Close
,
Viju O. John Met Office, Exeter, United Kingdom

Search for other papers by Viju O. John in
Current site
Google Scholar
PubMed
Close
,
Peter Rayer Met Office, Exeter, United Kingdom

Search for other papers by Peter Rayer in
Current site
Google Scholar
PubMed
Close
,
Jörg Schulz European Organisation for the Exploitation of Meteorological Satellites, Darmstadt, Germany

Search for other papers by Jörg Schulz in
Current site
Google Scholar
PubMed
Close
,
Kenneth Holmlund European Organisation for the Exploitation of Meteorological Satellites, Darmstadt, Germany

Search for other papers by Kenneth Holmlund in
Current site
Google Scholar
PubMed
Close
,
Dorothee Coppens European Organisation for the Exploitation of Meteorological Satellites, Darmstadt, Germany

Search for other papers by Dorothee Coppens in
Current site
Google Scholar
PubMed
Close
,
Dieter Klaes European Organisation for the Exploitation of Meteorological Satellites, Darmstadt, Germany

Search for other papers by Dieter Klaes in
Current site
Google Scholar
PubMed
Close
,
James E. Johnson Goddard Earth Sciences Data and Information Services Center, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by James E. Johnson in
Current site
Google Scholar
PubMed
Close
,
Asghar E. Esfandiari Goddard Earth Sciences Data and Information Services Center, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Asghar E. Esfandiari in
Current site
Google Scholar
PubMed
Close
,
Irina V. Gerasimov Goddard Earth Sciences Data and Information Services Center, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Irina V. Gerasimov in
Current site
Google Scholar
PubMed
Close
,
Emily B. Zamkoff Goddard Earth Sciences Data and Information Services Center, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Emily B. Zamkoff in
Current site
Google Scholar
PubMed
Close
,
Atheer F. Al-Jazrawi Goddard Earth Sciences Data and Information Services Center, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Atheer F. Al-Jazrawi in
Current site
Google Scholar
PubMed
Close
,
David Santek Space Science and Engineering Center, University of Madison–Wisconsin, Madison, Wisconsin

Search for other papers by David Santek in
Current site
Google Scholar
PubMed
Close
,
Mirko Albani European Space Agency, Frascati, Italy

Search for other papers by Mirko Albani in
Current site
Google Scholar
PubMed
Close
,
Pascal Brunel Météo-France, Lannion, France

Search for other papers by Pascal Brunel in
Current site
Google Scholar
PubMed
Close
,
Karsten Fennig Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by Karsten Fennig in
Current site
Google Scholar
PubMed
Close
,
Marc Schröder Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by Marc Schröder in
Current site
Google Scholar
PubMed
Close
,
Shinya Kobayashi Japan Meteorological Agency, Tokyo, Japan

Search for other papers by Shinya Kobayashi in
Current site
Google Scholar
PubMed
Close
,
Dieter Oertel Akademie der Wissenschaften der Deutschen Demokratischen Republik, Berlin, Germany

Search for other papers by Dieter Oertel in
Current site
Google Scholar
PubMed
Close
,
Wolfgang Döhler Meteorologischer Dienst der DDR, and Meteorological Observatory Potsdam of the Deutscher Wetterdienst, Potsdam, Germany

Search for other papers by Wolfgang Döhler in
Current site
Google Scholar
PubMed
Close
,
Dietrich Spänkuch Meteorologischer Dienst der DDR, and Meteorological Observatory Potsdam of the Deutscher Wetterdienst, Potsdam, Germany

Search for other papers by Dietrich Spänkuch in
Current site
Google Scholar
PubMed
Close
, and
Stephan Bojinski World Meteorological Organization, Geneva, Switzerland

Search for other papers by Stephan Bojinski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To better understand the impacts of climate change, environmental monitoring capabilities must be enhanced by deploying additional and more accurate satellite- and ground-based (including in situ) sensors. In addition, reanalysis of observations collected decades ago but long forgotten can unlock precious information about the recent past. Historical, in situ observations mainly cover densely inhabited areas and frequently traveled routes. In contrast, large selections of early meteorological satellite data, waiting to be exploited today, provide information about remote areas unavailable from any other source. When initially collected, these satellite data posed great challenges to transmission and archiving facilities. As a result, data access was limited to the main teams of scientific investigators associated with the instruments. As archive media have aged, so have the mission scientists and other pioneers of satellite meteorology, who sometimes retired in possession of unique and unpublished information.

This paper presents examples of recently recovered satellite data records, including satellite imagery, early infrared hyperspectral soundings, and early microwave humidity soundings. Their value for climate applications today can be realized using methods and techniques that were not yet available when the data were first collected, including efficient and accurate observation simulators and data assimilation into reanalyses. Modern technical infrastructure allows serving entire mission datasets online, enabling easy access and exploration by a broad range of users, including new and old generations of climate scientists.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

ADDITIONAL AFFILIATIONS: Johnson, Esfandiari, and Gerasimov—ADNET Systems, Inc., Bethesda, Maryland; Zamkoff—Wyle Information Systems, LLC, Burlington, Massachusetts; Al-Jazrawi—Telophase Corp., Arlington, Virginia

CORRESPONDING AUTHOR: Paul Poli, paul.poli@shom.fr

A supplement to this article is available online (10.1175/BAMS-D-15-00194.2).

Abstract

To better understand the impacts of climate change, environmental monitoring capabilities must be enhanced by deploying additional and more accurate satellite- and ground-based (including in situ) sensors. In addition, reanalysis of observations collected decades ago but long forgotten can unlock precious information about the recent past. Historical, in situ observations mainly cover densely inhabited areas and frequently traveled routes. In contrast, large selections of early meteorological satellite data, waiting to be exploited today, provide information about remote areas unavailable from any other source. When initially collected, these satellite data posed great challenges to transmission and archiving facilities. As a result, data access was limited to the main teams of scientific investigators associated with the instruments. As archive media have aged, so have the mission scientists and other pioneers of satellite meteorology, who sometimes retired in possession of unique and unpublished information.

This paper presents examples of recently recovered satellite data records, including satellite imagery, early infrared hyperspectral soundings, and early microwave humidity soundings. Their value for climate applications today can be realized using methods and techniques that were not yet available when the data were first collected, including efficient and accurate observation simulators and data assimilation into reanalyses. Modern technical infrastructure allows serving entire mission datasets online, enabling easy access and exploration by a broad range of users, including new and old generations of climate scientists.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

ADDITIONAL AFFILIATIONS: Johnson, Esfandiari, and Gerasimov—ADNET Systems, Inc., Bethesda, Maryland; Zamkoff—Wyle Information Systems, LLC, Burlington, Massachusetts; Al-Jazrawi—Telophase Corp., Arlington, Virginia

CORRESPONDING AUTHOR: Paul Poli, paul.poli@shom.fr

A supplement to this article is available online (10.1175/BAMS-D-15-00194.2).

Supplementary Materials

    • Supplemental Materials (PDF 1.73 MB)
Save
  • Ablain, M., A. Cazenave, G. Valladeau, and S. Guinehut, 2009: A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci., 5, 193201, doi:10.5194/os-5-193-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albani, M., and Coauthors, 2012: Long term preservation of Earth observation space data: European LTDP common guidelines. LTDP Working Group Rep. GSCB-LTDP-EOPG-GD-09–0002 Issue 2.0, 48 pp. [Available online at https://earth.esa.int/documents/1656065/1681917/EuropeanLTDPCommonGuidelines_Issue2.0.pdf.]

  • Allan, R., P. Brohan, G. P. Compo, R. Stone, J. Luterbacher, and S. Brönnimann, 2011: The International Atmospheric Circulation Reconstructions over the Earth (ACRE) Initiative. Bull. Amer. Meteor. Soc., 92, 14211425, doi:10.1175/2011BAMS3218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asrar, G., and D. J. Dokken, Eds., 1993: Earth Observing System (EOS) Reference Handbook. NASA, 148 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930014548.pdf.]

  • Bates, J. J., and J. L. Privette, 2012: A maturity model for assessing the completeness of climate data records. Eos, Trans. Amer. Geophys. Union, 93, 441, doi:10.1029/2012EO440006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhartia, P. K., R. D. McPeters, L. E. Flynn, S. Taylor, N. A. Kramarova, S. Frith, B. Fisher, and M. DeLand, 2013: Solar Backscatter UV (SBUV) total ozone and profile algorithm. Atmos. Meas. Tech., 6, 25332548, doi:10.5194/amt-6-2533-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bojinski, S., M. Verstraete, T. C. Peterson, C. Richter, A. Simmons, and M. Zemp, 2014: The concept of essential climate variables in support of climate research, applications, and policy. Bull. Amer. Meteor. Soc., 95, 14311443, doi:10.1175/BAMS-D-13-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., C. Cao, and W. P. Menzel, 2013: Intersatellite calibration of NOAA HIRS CO2 channels for climate studies. J. Geophys. Res. Atmos., 118, 51905203, doi:10.1002/jgrd.50447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., J. S. Whitaker, and P. D. Sardeshmukh, 2006: Feasibility of a 100-year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175190, doi:10.1175/BAMS-87-2-175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Coppens, D., B. Theodore, W. Doehler, A. Damiano, D. Oertel, D. Klaes, J. Schmetz, and D. Spaenkuch, 2015: Exploitation of SI-1 data from Meteor-28 and 29 spacecraft for climate purposes. 2015 EUMETSAT Meteorological Satellite Conf., Toulouse, France, EUMETSAT. [Available online at https://cimss.ssec.wisc.edu/itwg/itsc/itsc20/program/PDFs/30Oct/session7b/7p_07_coppens.pdf.]

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., M. Balmaseda, G. Balsamo, R. Engelen, A. J. Simmons, and J.-N. Thépaut, 2014: Toward a consistent reanalysis of the climate system. Bull. Amer. Meteor. Soc., 95, 12351248, doi:10.1175/BAMS-D-13-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, M., and Coauthors, 2013: Strategy towards an architecture for climate monitoring from space. CEOS, WMO, and CGMS Rep., 39 pp. [Available online at http://ceos.org/document_management/Working_Groups/WGClimate/WGClimate_Strategy-Towards-An-%20Architecture-For-Climate-Monitoring-From-Space_2013.pdf.]

  • Fennig, K., A. Andersson, and M. Schröder, 2015: Fundamental climate data record of SSM/I / SSMIS brightness temperatures. Satellite Application Facility on Climate Monitoring, accessed 20 Apr 2017, doi:10.5676/EUM_SAF_CM/FCDR_MWI/V002.

    • Crossref
    • Export Citation
  • Gallaher, D., and G. Campbell, 2014: Nimbus ice edge points from Nimbus visible imagery L2, CSV. National Snow and Ice Data Center, Boulder, CO, digital media, doi:10.5067/NIMBUS/NmIcEdg2.

    • Crossref
    • Export Citation
  • GCOS, 2010a: Implementation plan for the global observing system for climate in support of the UNFCCC (2010 update). GCOS Rep. 138, 186 pp. [Available online at www.wmo.int/pages/prog/gcos/Publications/gcos-138.pdf.]

  • GCOS, 2010b: Guideline for the generation of datasets and products meeting GCOS requirements. GCOS Rep. 143, 12 pp. [Available online at www.wmo.int/pages/prog/gcos/Publications/gcos-143.pdf.]

  • Goldberg, M., and Coauthors, 2011: The Global Space-based Inter-Calibration System. Bull. Amer. Meteor. Soc., 92, 467475, doi:10.1175/2010BAMS2967.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregow, H., and Coauthors, 2015: Worldwide survey of awareness and needs concerning reanalyses and respondents views on climate services. Bull. Amer. Meteor. Soc., 97, 14611473, doi:10.1175/BAMS-D-14-00271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harries, J. E., H. E. Brindley, P. J. Sagoo, and R. J. Bantges, 2001: Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997. Nature, 410, 355357, doi:10.1038/35066553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollmann, R., and Coauthors, 2013: The ESA climate change initiative: Satellite data records for essential climate variables. Bull. Amer. Meteor. Soc., 94, 15411552, doi:10.1175/BAMS-D-11-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., F. W. Taylor, and C. D. Rodgers, 1986: Remote Sounding of Atmospheres. Cambridge University Press, 343 pp.

  • IPCC, 2014a: Climate Change 2014: Synthesis Report Summary for Policymakers. Cambridge University Press, 32 pp. [Available online at www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf.]

  • IPCC, 2014b: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Cambridge University Press, 688 pp. [Available online at www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-PartB_FINAL.pdf.]

  • John, V. O., G. Holl, R. P. Allan, S. A. Buehler, D. E. Parker, and B. J. Soden, 2011: Clear-sky biases in satellite infrared estimates of upper tropospheric humidity and its trends. J. Geophys. Res., 116, D14108, doi:10.1029/2010JD015355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • John, V. O., R. Roebeling, and J. Schulz, 2014: CORE-CLIMAX system maturity matrix instruction manual. EUMETSAT Doc. CC/EUM/MAN/13/002 v4, 34 pp. [Available online at www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CORE_CLIMAX_MANUAL&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

  • Kållberg, P., S. Uppala, and A. Simmons, 2010: The real first weather satellite picture. Weather, 65, 211213, doi:10.1002/wea.652.

  • Kempe, V., D. Oertel, R. Schuster, H. Becker-Ross, and H. Jahn, 1980: Absolute IR-spectra from the measurement of Fourier-spectrometers aboard Meteor 25 and 28. Acta Astronaut., 7, 14031416, doi:10.1016/0094-5765(80)90015-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khayat, M., S. Kempler, B. Deshong, I. Gerasimov, J. Johnson, E. Esfandiari, and M. Berganski, 2013: Implementing an open-source document preservation system at NASA GES-DISC. 2013 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract IN13A-1548. [Available online at http://disc.sci.gsfc.nasa.gov/additional/publications/year_2013/implement_open_source_preservation/.]

  • Knapp, K. R., 2008: Scientific data stewardship of International Satellite Cloud Climatology Project B1 global geostationary observations. J. Appl. Remote Sens., 2, 023548, doi:10.1117/1.3043461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., P. Poli, and V. John, 2015: CM-SAF visiting scientist activity CM_VS14_01 report: Characterisation of SSM/T-2 radiances using ERA-Interim and other reanalyses. ERA Rep. 21, 37 pp. [Available online at www.ecmwf.int/sites/default/files/elibrary/2015/10518-cm-saf-visiting-scientist-activity-cmvs1401-report-characterisation-ssmt-2-radiances-using.pdf.]

  • Lattanzio, A., and Coauthors, 2013: Land surface albedo from geostationary satellites: A multiagency collaboration within SCOPE-CM. Bull. Amer. Meteor. Soc., 94, 205214, doi:10.1175/BAMS-D-11-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, S. S., J. G. Anderson, and G. Ohring, 2008: Climate signal detection times and constraints on climate benchmark accuracy requirements. J. Climate, 21, 841846, doi:10.1175/2007JCLI1946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNally, A. P., and P. D. Watts, 2003: A cloud detection algorithm for high-spectral-resolution infrared sounders. Quart. J. Roy. Meteor. Soc., 129, 34113423, doi:10.1256/qj.02.208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academy of Sciences, Engineering, and Medicine, 2015: Continuity of NASA Earth Observations from Space: A Value Framework. National Academies Press, 105 pp.

  • Njoku, E. G., 2003: Nimbus-7 SMMR Pathfinder brightness temperatures. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/daac/nsidc0036_smmr_pathfinder_tbs.gd.html.]

  • Poli, P., and P. Brunel, 2016: Meteorological satellite data rescue: Assessing radiances from Nimbus-IV IRIS (1970-1971) and Nimbus-VI HIRS (1975-1976). ERA Rep. 23, 59 pp. [Available online at www.ecmwf.int/sites/default/files/elibrary/2016/16338-meteorological-satellite-data-rescue-assessing-radiances-nimbus-iv-iris-1970-1971-and-nimbus.pdf.]

  • Poli, P., C. Peubey, K. Fennig, M. Schroeder, R. Roebelling, and A. Geer, 2015: Pre-assimilation feedback on a fundamental climate data record of brightness temperatures from special sensor microwave imagers: A step towards MIPs4Obs? ERA Rep. 19, 50 pp. [Available online at www.ecmwf.int/sites/default/files/elibrary/2015/11695-pre-assimilation-feedback-fundamental-climate-data-record-brightness-temperatures-special.pdf.]

  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the 20th century. J. Climate, 29, 40834097, doi:10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichhardt, T., 2006: First photo from space. Air and Space Magazine, 24 October. [Available online at www.airspacemag.com/space/the-first-photo-from-space-13721411.]

  • Saunders, R. W., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125, 14071425, doi:10.1002/qj.1999.49712555615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, J., and Coauthors, 2009: Operational climate monitoring from space: The EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF). Atmos. Chem. Phys., 9, 16871709, doi:10.5194/acp-9-1687-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., and Coauthors, 2016: Observation and integrated Earth-system science: A roadmap for 2016–25. Adv. Space Res., 57, 20372103, doi:10.1016/j.asr.2016.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spänkuch, D., 1980: Arbeiten des Meteorologischen Dienstes der DDR auf dem Gebiet der indirekten Sondierung. Z. Meteor., 30, 205214.

    • Search Google Scholar
    • Export Citation
  • Stickler, A., and Coauthors, 2014: ERA-CLIM: Historical surface and upper-air data for future reanalyses. Bull. Amer. Meteor. Soc., 95, 14191430, doi:10.1175/BAMS-D-13-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suomi, V. E., 1958: The radiation balance of the Earth from a satellite. Ann. IGY, I, 331340.

  • Takacs, L. L., M. Suarez, and R. Todling, 2016: Maintaining atmospheric mass and water balance within reanalysis. Quart. J. Roy. Meteor. Soc., 142, 15651573, doi:10.1002/qj.2763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K., R. Stouffer, and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., D. Waliser, R. Ferraro, P. Gleckler, T. Lee, and G. Potter, 2014: Satellite observations for CMIP5: The genesis of Obs4MIPs. Bull. Amer. Meteor. Soc., 95, 13291334, doi:10.1175/BAMS-D-12-00204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wentz, F. J., 2013: SSM/I version-7 calibration report. Remote Sensing Systems Tech. Rep. 011012, 46 pp.

  • Zeng, Y., and Coauthors, 2015: Analysis of current validation practices in Europe for space-based climate data records of essential climate variables. Int. J. Appl. Earth Obs. Geoinf., 42, 150161, doi:10.1016/j.jag.2015.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, C. Z., and W. H. Wang, 2011: Intersatellite calibration of AMSU-A observations for weather and climate applications. J. Geophys. Res., 116, D23113, doi:10.1029/2011JD016205.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1187 258 9
PDF Downloads 619 129 9