Diurnal Variation of TRMM/LIS Lightning Flash Radiances

Themistoklis Chronis University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Themistoklis Chronis in
Current site
Google Scholar
PubMed
Close
and
William J. Koshak NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by William J. Koshak in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study provides, for the first time, an analysis of the climatological diurnal variations in the lightning flash radiance data product ε from the Tropical Rainfall Measuring Mission Lightning Imaging Sensor (TRMM/LIS). The ε values over 13 years (2002–14), and over a global scale (∼38°S–38°N), reveal novel and remarkably consistent regional and seasonal patterns as a function of the local solar time (LST). In particular, the diurnal variation of ε (over both continental and oceanic regions) is characterized by a monotonic increase from late afternoon (∼2000 LST), attaining a maximum around 0900 LST, followed by a decreasing trend. The continental (oceanic) ε values reach a broader minimum spanning from ∼1500 to 1900 LST (∼1800 to 2000). The relative diurnal amplitude variation in continental ε is about 45%, compared to about 15% for oceanic ε. This study confirms that the results are not affected by diurnal biases associated with instrument detection or other statistical artifacts. Notable agreement is shown between the diurnal variations of ε and the global-scale (∼38°S–38°N) mesoscale convective system areal extent. Comparisons with recently published diurnal variations of cloud-to-ground lightning peak current over the United States also exhibit a marked similarity. Given the novelty of these findings, a few tentative hypotheses about the underlying physical mechanism(s) are discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Themistoklis Chronis, themis.chronis@nsstc.uah.edu

Publisher’s Note: On 25 July 2017 this article was revised to correct the in-text citation for Stolzenburg and Marshall (1998).

Abstract

This study provides, for the first time, an analysis of the climatological diurnal variations in the lightning flash radiance data product ε from the Tropical Rainfall Measuring Mission Lightning Imaging Sensor (TRMM/LIS). The ε values over 13 years (2002–14), and over a global scale (∼38°S–38°N), reveal novel and remarkably consistent regional and seasonal patterns as a function of the local solar time (LST). In particular, the diurnal variation of ε (over both continental and oceanic regions) is characterized by a monotonic increase from late afternoon (∼2000 LST), attaining a maximum around 0900 LST, followed by a decreasing trend. The continental (oceanic) ε values reach a broader minimum spanning from ∼1500 to 1900 LST (∼1800 to 2000). The relative diurnal amplitude variation in continental ε is about 45%, compared to about 15% for oceanic ε. This study confirms that the results are not affected by diurnal biases associated with instrument detection or other statistical artifacts. Notable agreement is shown between the diurnal variations of ε and the global-scale (∼38°S–38°N) mesoscale convective system areal extent. Comparisons with recently published diurnal variations of cloud-to-ground lightning peak current over the United States also exhibit a marked similarity. Given the novelty of these findings, a few tentative hypotheses about the underlying physical mechanism(s) are discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Themistoklis Chronis, themis.chronis@nsstc.uah.edu

Publisher’s Note: On 25 July 2017 this article was revised to correct the in-text citation for Stolzenburg and Marshall (1998).

Save
  • Bailey, J. C., R. J. Blakeslee, D. E. Buechler, and H. J. Christian, 2007: Diurnal lightning distributions as observed by the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS). Proceedings of the 13th International Conference on Atmospheric Electricity, X. Qie and C. Sauders, Eds., Vol. II, ICAE, 657–660.

  • Balling, R. C., Jr., 1985: Warm season nocturnal precipitation in the Great Plains of the United States. J. Climate Appl. Meteor., 24, 13831387, doi:10.1175/1520-0450(1985)024<1383:WSNPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beirle, S., W. Koshak, R. Blakeslee, and T. Wagner, 2014: Global patterns of lightning properties derived by OTD and LIS. Nat. Hazards Earth Syst. Sci., 14, 27152726, doi:10.5194/nhess-14-2715-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blakeslee, R. J., and W. J. Koshak, 2016: LIS on ISS: Expanded global coverage and enhanced applications, The Earth Observer, Vol. 28, No. 3, EOS Project Science Office, Greenbelt, MD, 4–14. [Available online at https://eospso.gsfc.nasa.gov/sites/default/files/eo_pdfs/May_June_2016_color%20508.pdf.]

  • Blakeslee, R. J., D. M. Mach, M. G. Bateman, and J. C. Bailey, 2014: Seasonal variations in the lightning diurnal cycle and implications for the global electric circuit. Atmos. Res., 135–136, 228243, doi:10.1016/j.atmosres.2012.09.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., 2002: Lightning scaling relations revisited. J. Atmos. Sci., 59, 10861104, doi:10.1175/1520-0469(2002)059<1086:LSRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., and Coauthors, 2000a: The Optical Transient Detector (OTD): Instrument characteristics and cross-sensor validation. J. Atmos. Oceanic Technol., 17, 441458, doi:10.1175/1520-0426(2000)017<0441:TOTDOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., S. J. Goodman, and S. Heckman, 2000b: Regional differences in tropical lightning distributions. J. Appl. Meteor., 39, 22312248, doi:10.1175/1520-0450(2001)040<2231:RDITLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buechler, D. E., W. J. Koshak, H. J. Christian, and S. J. Goodman, 2012: Assessing the performance of the Lightning Imaging Sensor (LIS) using Deep Convective Clouds. Atmos. Res., 135–136, 397403, doi:10.1016/j.atmosres.2012.09.008.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and life cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, doi:10.1002/qj.49712353806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., R. J. Blakeslee, and S. J. Goodman, 1989: The detection of lightning from geostationary orbit. J. Geophys. Res., 94, 13 32913 337, doi:10.1029/JD094iD11p13329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chronis, T. G., 2009: Investigating possible links between incoming cosmic ray fluxes and lightning activity over United States. J. Climate, 22, 57485754, doi:10.1175/2009JCLI2912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chronis, T. G., 2012: Preliminary lightning observations over Greece. J. Geophys. Res., 117, D03113, doi:10.1029/2011JD017063.

  • Chronis, T. G., D. Carey, C. J. Schultz, E. V. Schultz, K. M. Calhoun, and S. J. Goodman, 2015a: Exploring lightning jump characteristics. Wea. Forecasting, 30, 2337, doi:10.1175/WAF-D-14-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chronis, T. G., K. Cummins, R. Said, W. Koshak, E. McCaul, E. R. Williams, G. T. Stano, and M. Grant, 2015b: Climatological diurnal variation of negative CG lightning peak current over the continental United States. J. Geophys. Res. Atmos., 120, 582589, doi:10.1002/2014JD022547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chronis, T. G., T. Lang, W. Koshak, R. Blakeslee, H. Christian, E. McCaul, and J. Bailey, 2015c: Diurnal characteristics of lightning flashes detected over the São Paulo Lightning Mapping Array. J. Geophys. Res. Atmos., 120, 11 79911 808, doi:10.1002/2015JD023960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chronis, T. G., W. Koshak, and E. McCaul, 2016: Why do oceanic negative cloud-to-ground lightning exhibit larger peak current values? J. Geophys. Res. Atmos., 121, 40494068, doi:10.1002/2015JD024129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooray, V., R. Jayaratne, and K. L. Cummins, 2014: On the peak amplitude of lightning return stroke currents striking the sea. Atmos. Res., 149, 372376, doi:10.1016/j.atmosres.2013.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518, doi:10.1109/TEMC.2009.2023450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., E. P. Krider, and M. Malone, 1998: The U.S. National Detection Network and applications of cloud-to-ground lightning data by electric power utilities. IEEE Trans. Electromagn. Compat., 40, 465480, doi:10.1109/15.736207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, doi:10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and P. J. Robinson, 1985: The diurnal variation of thunderstorm activity in the United States. J. Climate Appl. Meteor., 24, 10481058, doi:10.1175/1520-0450(1985)024<1048:TDVOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomes, C., and V. Cooray, 1998: Correlation between the optical signatures and current waveforms of long sparks: Applications in lightning research. J. Electrost., 43, 267274, doi:10.1016/S0304-3886(98)00008-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman S., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, doi:10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, C., and E. P. Krider, 1982: The optical and radiation field signatures produced by lightning return strokes. J. Geophys. Res., 87, 89138922, doi:10.1029/JC087iC11p08913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holle, R. L., 2014: Diurnal variations of NLDN-reported cloud-to-ground lightning in the United States. Mon. Wea. Rev., 142, 10371052, doi:10.1175/MWR-D-13-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Hutchins, M. L., R. H. Holzworth, C. J. Rodger, and J. B. Brundell, 2012: Far-field power of lightning strokes as measured by the World Wide Lightning Location Network. J. Atmos. Oceanic Technol., 29, 11021110, doi:10.1175/JTECH-D-11-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchins, M. L., R. H. Holzworth, K. S. Virts, J. M. Wallace, and S. Heckman, 2013: Radiated VLF energy differences of land and oceanic lightning. Geophys. Res. Lett., 40, 23902394, doi:10.1002/grl.50406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchins, M. L., R. H. Holzworth, and J. B. Brundell, 2014: Diurnal variation of the global electric circuit from clustered thunderstorms. J. Geophys. Res. Space Phys., 119, 620629, doi:10.1002/2013JA019593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Idone, V. P., and R. E. Orville, 1985: Correlated peak relative light intensity and peak current in triggered lightning subsequent return strokes. J. Geophys. Res., 90, 61596164, doi:10.1029/JD090iD04p06159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Israel, H., 1971: Fundamentals, Conductivity, and Ions.Vol. 1, Atmospheric Electricity, Israel Program for Scientific Translations, 317 pp.

  • Kasemir, H. W., 1965: The thundercloud. Problems of Atmospheric and Space Electricity, S. C. Coroniti, Ed., Elsevier, 215–231.

  • Koshak, W. J., 2010: Optical characteristics of OTD flashes and the implications for flash-type discrimination. J. Atmos. Oceanic Technol., 27, 18221838, doi:10.1175/2010JTECHA1405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., M. F. Stewart, H. J. Christian, J. W. Bergstrom, J. M. Hall, and R. J. Solakiewicz, 2000: Laboratory calibration of the Optical Transient Detector and the Lightning Imaging Sensor. J. Atmos. Oceanic Technol., 17, 905915, doi:10.1175/1520-0426(2000)017, 0905:LCOTOT.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., H. S. Peterson, A. P. Biazar, M. Khan, and L. Wang, 2014a: The NASA Lightning Oxides Model (LNOM): Application to air quality modeling. Atmos. Res., 135–136, 363369, doi:10.1016/j.atmosres.2012.12.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., B. Vant-Hull, E. W. McCaul, and H. S. Peterson, 2014b: Variation of a lightning NOx indicator for national climate assessment. Preprints, 15th Int. Conf. on Atmospheric Electricity, Norman, OK, IAMAS/IUGG. [Available online at www.nssl.noaa.gov/users/mansell/icae2014/preprints/Koshak_137.pdf.]

  • Koshak, W. J., K. L. Cummins, D. E. Buechler, B. Vant-Hull, R. J. Blakeslee, E. R. Williams, and H. S. Peterson, 2015: Variability of CONUS lightning in 2003–12 and associated impacts. J. Appl. Meteor. Climatol., 54, 1541, doi:10.1175/JAMC-D-14-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lay, E. H., A. R. Jacobson, R. H. Holzworth, C. J. Rodger, and R. L. Dowden, 2007: Local time variation in land/ocean lightning flash density as measured by the World Wide Lightning Location Network. J. Geophys. Res., 112, D13111, doi:10.1029/2006JD007944.

    • Search Google Scholar
    • Export Citation
  • Liu, C., E. Zipser, D. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, R. E., and R. L. Holle, 1986: Diurnal and spatial variability of lightning activity in northeastern Colorado and central Florida during the summer. Mon. Wea. Rev., 114, 12881312, doi:10.1175/1520-0493(1986)114<1288:DASVOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., M. Uliasz, and T. Nelson, 1998: Large peak current cloud-to-ground lightning flashes during the summer months in the contiguous United States. Mon. Wea. Rev., 126, 22172233, doi:10.1175/1520-0493(1998)126<2217:LPCCTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and C. D. Morgenstern, 1998: Some characteristics of cloud-to-ground lightning in mesoscale convective systems. J. Geophys. Res., 103, 14 01114 023, doi:10.1029/97JD03221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mach, D. M., H. J. Christian, R. J. Blakeslee, D. J. Boccippio, S. J. Goodman, and W. L. Boeck, 2007: Performance assessment of the optical transient detector and lightning imaging sensor. J. Geophys. Res., 112, D09210, doi:10.1029/2006JD007787.

    • Search Google Scholar
    • Export Citation
  • Mazur, V., and L. H. Ruhnke, 1998: Model of electric charges in thunderstorms and associated lightning. J. Geophys. Res., 103, 23 29923 308, doi:10.1029/98JD02120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nag, A., and Coauthors, 2011: Evaluation of U.S. National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004–2009. J. Geophys. Res., 116, D02123, doi:10.1029/2010JD014929.

    • Search Google Scholar
    • Export Citation
  • Nastos, P. T., I. T. Matsangouras, and T.G. Chronis, 2013: Spatio-temporal analysis of lightning activity over Greece—Preliminary results derived from the recent state precision lightning network. Atmos. Res., 144, 207217, doi:10.1016/j.atmosres.2013.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 11791193, doi:10.1175/1520-0493(2001)129<1179:CTGLIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orville, R. E., G. R. Huffines, W. R. Burrows, and K. L. Cummins, 2011: The North American Lightning Detection Network (NALDN)—Analysis of flash data: 2001–09. Mon. Wea. Rev., 139, 13051322, doi:10.1175/2010MWR3452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, O., Jr., R. B. B. Gin, I. R. C. A. Pinto, O. Mendes Jr., J. H. Diniz, and A. M. Carvalho, 1996: Cloud-to-ground lightning flash characteristics in southeastern Brazil for the 1992-1993 summer season. J. Geophys. Res., 101, 26 62726 635, doi:10.1029/96JD01865.

    • Search Google Scholar
    • Export Citation
  • Rachidi, F., and R. Thottapillil, 1993: Determination of lightning currents from far electromagnetic fields. J. Geophys. Res., 98, 18 31518 321, doi:10.1029/93JD01616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and H. E. Fuelberg, 2010: Pre- and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the contiguous United States. Mon. Wea. Rev., 138, 36233633, doi:10.1175/2010MWR3283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rycroft, M. J., R. G. Harrison, K. A. Nicoll, and E. A. Mareev, 2008: An overview of Earth’s global electric circuit and atmospheric conductivity. Space Sci. Rev., 137, 83105, doi:10.1007/s11214-008-9368-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Said, R. K., M. B. Cohen, and U. S. Inan, 2013: Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations. J. Geophys. Res. Atmos., 118, 69056915, doi:10.1002/jgrd.50508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744755, doi:10.1175/WAF-D-10-05026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., and T. C. Marshall, 1998: Charged precipitation and electric field in two thunderstorms. J. Geophys. Res., 103, 19 77719 790, doi:10.1029/98JD01675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and J. A. Smith, 2013: Spatial and temporal variation of cloud-to-ground lightning over the continental U.S. during the period 1995–2010. Atmos. Res., 124, 137148, doi:10.1016/j.atmosres.2012.12.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2013: Highlights of a new ground-based, hourly global lightning climatology. Bull. Amer. Meteor. Soc., 94, 13811391, doi:10.1175/BAMS-D-12-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2015: Diurnal and seasonal lightning variability over the Gulf Stream and the Gulf of Mexico. J. Atmos. Sci., 72, 26572665, doi:10.1175/JAS-D-14-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, doi:10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., N. Takagi, T. Watanabe, V. A. Rakov, M. A. Uman, K. J. Rambo, and M. V. Stapleton, 2005: A comparison of channel-base currents and optical signals for rocket-triggered lightning strokes. Atmos. Res., 76, 412422, doi:10.1016/j.atmosres.2004.11.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whipple, F., 1929: On the association of the diurnal variation of electric potential gradient in fine weather with the distribution of thunderstorms over the globe. Quart. J. Roy. Meteor. Soc., 55, 118, doi:10.1002/qj.49705522902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 2005: Lightning and climate: A review. Atmos. Res., 76, 272287, doi:10.1016/j.atmosres.2004.11.014.

  • Williams, E. R., 2009: The global electrical circuit: A review. Atmos. Res., 91, 140152, doi:10.1016/j.atmosres.2008.05.018.

  • Williams, E. R., and S. J. Heckman, 1993: The local diurnal variation of cloud electrification and the global diurnal variation of negative charge on the Earth. J. Geophys. Res., 98, 5221, doi:10.1029/92JD02642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and S. Stanfill, 2002: The physical origin of the land–ocean contrast in lightning activity. C. R. Phys., 3, 12771292, doi:10.1016/S1631-0705(02)01407-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and G. Satori, 2004: Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys. J. Atmos. Sol.-Terr. Phys., 66, 12131231, doi:10.1016/j.jastp.2004.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and S. Heckman, 2012: Polarity asymmetry in lightning leaders: The evolution of ideas on lightning behavior from strikes to aircraft. Aerospace Lab Journal, No. 5, ONERA, Paris, France, AL05–04. [Available online at www.aerospacelab-journal.org/sites/www.aerospacelab-journal.org/files/AL05-04_0.pdf.]

  • Williams, E. R., D. Rosenfeld, N. Madden, C. Labrada, J. Gerlach, and L. Atkinson, 1999: The role of boundary layer aerosol in the vertical development of precipitation and electrification: Another look at the contrast in lightning over land and over ocean. Proc. 11th Int. Conf. on Atmospheric Electricity, Guntersville, AL, IAMAS/IUGG, 754–757.

  • Williams, E. R., K. Rothkin, D. Stevenson, and D. Boccippio, 2000: Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms. J. Appl. Meteor., 39, 22232230, doi:10.1175/1520-0450(2001)040<2223:GLVCBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, doi:10.1029/2001JD000380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, C. T. R., 1921: Investigations on lightning discharges and on the electric field of thunderstorms. Philos. Trans. Roy. Soc. London, 221A, 73115, doi:10.1098/rsta.1921.0003.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 51905226, doi:10.1175/JCLI3883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zajac, B. A., and S. A. Rutledge, 2001: Cloud-to-ground lightning activity in the contiguous United States from 1995 to 1999. Mon. Wea. Rev., 129, 9991019, doi:10.1175/1520-0493(2001)129<0999:CTGLAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 523 158 9
PDF Downloads 357 104 7