Over 5,000 Years of Ensemble Future Climate Simulations by 60-km Global and 20-km Regional Atmospheric Models

Ryo Mizuta Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Ryo Mizuta in
Current site
Google Scholar
PubMed
Close
,
Akihiko Murata Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Akihiko Murata in
Current site
Google Scholar
PubMed
Close
,
Masayoshi Ishii Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Masayoshi Ishii in
Current site
Google Scholar
PubMed
Close
,
Hideo Shiogama National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

Search for other papers by Hideo Shiogama in
Current site
Google Scholar
PubMed
Close
,
Kenshi Hibino University of Tsukuba, Tsukuba, Ibaraki, Japan

Search for other papers by Kenshi Hibino in
Current site
Google Scholar
PubMed
Close
,
Nobuhito Mori Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan

Search for other papers by Nobuhito Mori in
Current site
Google Scholar
PubMed
Close
,
Osamu Arakawa University of Tsukuba, Tsukuba, Ibaraki, Japan

Search for other papers by Osamu Arakawa in
Current site
Google Scholar
PubMed
Close
,
Yukiko Imada Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Yukiko Imada in
Current site
Google Scholar
PubMed
Close
,
Kohei Yoshida Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Kohei Yoshida in
Current site
Google Scholar
PubMed
Close
,
Toshinori Aoyagi Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Toshinori Aoyagi in
Current site
Google Scholar
PubMed
Close
,
Hiroaki Kawase Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Hiroaki Kawase in
Current site
Google Scholar
PubMed
Close
,
Masato Mori Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan

Search for other papers by Masato Mori in
Current site
Google Scholar
PubMed
Close
,
Yasuko Okada Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan

Search for other papers by Yasuko Okada in
Current site
Google Scholar
PubMed
Close
,
Tomoya Shimura Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan

Search for other papers by Tomoya Shimura in
Current site
Google Scholar
PubMed
Close
,
Toshiharu Nagatomo University of Tsukuba, Tsukuba, Ibaraki, Japan

Search for other papers by Toshiharu Nagatomo in
Current site
Google Scholar
PubMed
Close
,
Mikiko Ikeda Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan

Search for other papers by Mikiko Ikeda in
Current site
Google Scholar
PubMed
Close
,
Hirokazu Endo Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Hirokazu Endo in
Current site
Google Scholar
PubMed
Close
,
Masaya Nosaka Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Masaya Nosaka in
Current site
Google Scholar
PubMed
Close
,
Miki Arai Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan

Search for other papers by Miki Arai in
Current site
Google Scholar
PubMed
Close
,
Chiharu Takahashi Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan

Search for other papers by Chiharu Takahashi in
Current site
Google Scholar
PubMed
Close
,
Kenji Tanaka Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan

Search for other papers by Kenji Tanaka in
Current site
Google Scholar
PubMed
Close
,
Tetsuya Takemi Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan

Search for other papers by Tetsuya Takemi in
Current site
Google Scholar
PubMed
Close
,
Yasuto Tachikawa Graduate School of Engineering, Kyoto University, Kyoto, Japan

Search for other papers by Yasuto Tachikawa in
Current site
Google Scholar
PubMed
Close
,
Khujanazarov Temur Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan

Search for other papers by Khujanazarov Temur in
Current site
Google Scholar
PubMed
Close
,
Youichi Kamae University of Tsukuba, Tsukuba, Ibaraki, Japan

Search for other papers by Youichi Kamae in
Current site
Google Scholar
PubMed
Close
,
Masahiro Watanabe Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan

Search for other papers by Masahiro Watanabe in
Current site
Google Scholar
PubMed
Close
,
Hidetaka Sasaki Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Hidetaka Sasaki in
Current site
Google Scholar
PubMed
Close
,
Akio Kitoh University of Tsukuba, Tsukuba, Ibaraki, Japan

Search for other papers by Akio Kitoh in
Current site
Google Scholar
PubMed
Close
,
Izuru Takayabu Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Izuru Takayabu in
Current site
Google Scholar
PubMed
Close
,
Eiichi Nakakita Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan

Search for other papers by Eiichi Nakakita in
Current site
Google Scholar
PubMed
Close
, and
Masahide Kimoto Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan

Search for other papers by Masahide Kimoto in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An unprecedentedly large ensemble of climate simulations with a 60-km atmospheric general circulation model and dynamical downscaling with a 20-km regional climate model has been performed to obtain probabilistic future projections of low-frequency local-scale events. The climate of the latter half of the twentieth century, the climate 4 K warmer than the preindustrial climate, and the climate of the latter half of the twentieth century without historical trends associated with the anthropogenic effect are each simulated for more than 5,000 years. From large ensemble simulations, probabilistic future changes in extreme events are available directly without using any statistical models. The atmospheric models are highly skillful in representing localized extreme events, such as heavy precipitation and tropical cyclones. Moreover, mean climate changes in the models are consistent with those in phase 5 of the Coupled Model Intercomparison Project (CMIP5) ensembles. Therefore, the results enable the assessment of probabilistic change in localized severe events that have large uncertainty from internal variability. The simulation outputs are open to the public as a database called “Database for Policy Decision Making for Future Climate Change” (d4PDF), which is intended to be utilized for impact assessment studies and adaptation planning for global warming.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Ryo Mizuta, rmizuta@mri-jma.go.jp

Abstract

An unprecedentedly large ensemble of climate simulations with a 60-km atmospheric general circulation model and dynamical downscaling with a 20-km regional climate model has been performed to obtain probabilistic future projections of low-frequency local-scale events. The climate of the latter half of the twentieth century, the climate 4 K warmer than the preindustrial climate, and the climate of the latter half of the twentieth century without historical trends associated with the anthropogenic effect are each simulated for more than 5,000 years. From large ensemble simulations, probabilistic future changes in extreme events are available directly without using any statistical models. The atmospheric models are highly skillful in representing localized extreme events, such as heavy precipitation and tropical cyclones. Moreover, mean climate changes in the models are consistent with those in phase 5 of the Coupled Model Intercomparison Project (CMIP5) ensembles. Therefore, the results enable the assessment of probabilistic change in localized severe events that have large uncertainty from internal variability. The simulation outputs are open to the public as a database called “Database for Policy Decision Making for Future Climate Change” (d4PDF), which is intended to be utilized for impact assessment studies and adaptation planning for global warming.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Ryo Mizuta, rmizuta@mri-jma.go.jp
Save
  • Allen, M. R., 2003: Liability for climate change. Nature, 421, 891892, doi:10.1038/421891a.

  • Bourke, R. H., and R. P. Garrett, 1987: Sea ice thickness distribution in the Arctic Ocean. Cold Reg. Sci. Technol., 13, 259280, doi:10.1016/0165-232X(87)90007-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelsom, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, doi:10.1029/2007GL030812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., and P. A. Stott, 2014: Change in the odds of warm years and seasons due to anthropogenic influence on the climate. J. Climate, 27, 26072621, doi:10.1175/JCLI-D-13-00563.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deushi, M., and K. Shibata, 2011: Development of a Meteorological Research Institute Chemistry-Climate Model version 2 for the study of tropospheric and stratospheric chemistry. Pap. Meteor. Geophys., 62, 146, doi:10.2467/mripapers.62.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duong, D. T., Y. Tachikawa, and K. Yorozu, 2014: Changes in river discharge in the Indochina Peninsula region projected using MRI-AGCM and MIROC5 datasets. J. Japan. Soc. Civil Eng. Ser. B1, 70, I_115I_120.

    • Search Google Scholar
    • Export Citation
  • Endo, H., A. Kitoh, T. Ose, R. Mizuta, and S. Kusunoki, 2012: Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi–sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J. Geophys. Res., 117, D16118, doi:10.1029/2012JD017874.

    • Search Google Scholar
    • Export Citation
  • Endo, H., A. Kitoh, R. Mizuta, and M. Ishii, 2017: Future changes in precipitation extremes in East Asia and their uncertainty based on large ensemble simulations with a high-resolution AGCM. SOLA, 13, 712, doi:10.2151/sola.2017-002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, H., M. Ekstrom, S. Blenkinsop, and A. Smith, 2007: Estimating change in extreme European precipitation using a multimodel ensemble. J. Geophys. Res., 112, D18104, doi:10.1029/2007JD008619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilleland, E., and R. W. Katz, 2011: New software to analyze how extremes change over time. Eos, Trans. Amer. Geophys. Union, 92, 1314, doi:10.1029/2011EO020001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., and Coauthors, 2016: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev., 9, 41854208, doi:10.5194/gmd-9-4185-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, G. R., D. M. H. Sexton, B. B. Booth, M. Collins, and J. M. Murphy, 2013: Probabilistic projections of transient climate change. Climate Dyn., 40, 29372972, doi:10.1007/s00382-012-1647-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 5775, doi:10.1175/JCLI-D-12-00837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • JMA, 2007: Outline of the operational numerical weather prediction at the Japan Meteorological Agency; Appendix to WMO technical progress report. Japan Meteorological Agency, 194 pp. [Available online at www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-nwp/index.htm.]

  • Kanada, S., M. Nakano, and T. Kato, 2012: Projections of future changes in precipitation and the vertical structure of the frontal zone during the Baiu season in the vicinity of Japan using a 5-km-mesh regional climate model. J. Meteor. Soc. Japan, 90A, 6586, doi:10.2151/jmsj.2012-A03.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, doi:10.1007/s10584-013-0705-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitoh, A., and H. Endo, 2016: Future changes in rainfall extremes associated with El Niño projected by a global 20-km mesh atmospheric model. SOLA, 12A, 16, doi:10.2151/sola.12A-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitoh, A., T. Ose, and I. Takayabu, 2016: Dynamical downscaling for climate projection with high-resolution MRI AGCM-RCM. J. Meteor. Soc. Japan, 94A, 116, doi:10.2151/jmsj.2015-022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., and R. Mizuta, 2013: Changes in precipitation intensity over East Asia during the 20th and 21st centuries simulated by a global atmospheric model with a 60 km grid size. J. Geophys. Res. Atmos., 118, 11 00711 016, doi:10.1002/jgrd.50877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizuta, R., and Coauthors, 2012: Climate simulations using MRI-AGCM3.2 with 20-km grid. J. Meteor. Soc. Japan, 90A, 233258, doi:10.2151/jmsj.2012-A12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizuta, R., O. Arakawa, T. Ose, S. Kusunoki, H. Endo, and A. Kitoh, 2014: Classification of CMIP5 future climate responses by the tropical sea surface temperature changes. SOLA, 10, 167171, doi:10.2151/sola.2014-035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, doi:10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, N., T. Yasuda, H. Mase, T. Tom, and Y. Oku, 2010: Projection of extreme wave climate change under the global warming. Hydrol. Res. Lett., 4, 1519, doi:10.3178/hrl.4.15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2012a: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260, doi:10.1175/JCLI-D-11-00415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., R. Mizuta, and E. Shindo, 2012b: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., 39, 25692584, doi:10.1007/s00382-011-1223-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murata, A., H. Sasaki, M. Hanafusa, and K. Kurihara, 2013: Estimation of urban heat island intensity using biases in surface air temperature simulated by a nonhydrostatic regional climate model. Theor. Appl. Climatol., 112, 351361, doi:10.1007/s00704-012-0739-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakano, M., M. Matsueda, and M. Sugi, 2013: Future projections of heat waves around Japan simulated by CMIP3 and high-resolution Meteorological Research Institute atmospheric climate models. J. Geophys. Res. Oceans, 118, 54615488, doi:10.1002/jgrc.20375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pall, P., T. Aina, D. A. Stone, P. A. Stott, T. Nozawa, A. G. J. Hilberts, D. Lohmann, and M. R. Allen, 2011: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470, 382385, doi:10.1038/nature09762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., C. K. Folland, K. Maskell, and M. N. Ward, 1995: Variability of summer rainfall over tropical North Africa (1906–92): Observations and modelling. Quart. J. Roy. Meteor. Soc., 121, 669704, doi:10.1002/qj.49712152311.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., A. Murata, M. Hanafusa, M. Oh’izumi, and K. Kurihara, 2011: Reproducibility of present climate in a non-hydrostatic regional climate model nested within an atmosphere general circulation model. SOLA, 7, 173176, doi:10.2151/sola.2011-044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimura, T., N. Mori, and H. Mase, 2015: Future projection of ocean wave climate: Analysis of SST impacts on wave climate changes in the western North Pacific. J. Climate, 28, 31713190, doi:10.1175/JCLI-D-14-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiogama, H., M. Watanabe, Y. Imada, M. Mori, Y. Kamae, M. Ishii, and M. Kimoto, 2014: Attribution of the June-July 2013 heat wave in the southwestern United States. SOLA, 10, 122126, doi:10.2151/sola.2014-025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., H. Shiogama, and S. Emori, 2010: Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc. Natl. Acad. Sci. USA, 107, 571575, doi:10.1073/pnas.0903186107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2014: The European climate under a 2°C global warming. Environ. Res. Lett., 9, 034006, doi:10.1088/1748-9326/9/3/034006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Coauthors, 2015: Towards predictive understanding of regional climate change. Nat. Climate Change, 5, 921930, doi:10.1038/nclimate2689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasuda, T., S. Nakajo, S. Kim, H. Mase, N. Mori, and K. Horsburgh, 2014: Evaluation of future storm surge risk in East Asia based on state-of-the-art climate change projection. Coastal Eng., 83, 6571, doi:10.1016/j.coastaleng.2013.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7058 2005 144
PDF Downloads 6033 1467 120