A Comprehensive Database of Flood Events in the Contiguous United States from 2002 to 2013

Xinyi Shen Civil and Environmental Engineering Department, University of Connecticut, Storrs, Connecticut

Search for other papers by Xinyi Shen in
Current site
Google Scholar
PubMed
Close
,
Yiwen Mei Civil and Environmental Engineering Department, University of Connecticut, Storrs, Connecticut

Search for other papers by Yiwen Mei in
Current site
Google Scholar
PubMed
Close
, and
Emmanouil N. Anagnostou Civil and Environmental Engineering Department, University of Connecticut, Storrs, Connecticut

Search for other papers by Emmanouil N. Anagnostou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Notwithstanding the rich record of hydrometric observations compiled by the U.S. Geological Survey (USGS) across the contiguous United States (CONUS), flood event catalogs are sparse and incomplete. Available databases or inventories are mostly survey- or report-based, impact oriented, or limited to flash floods. These data do not represent the full range of flood events occurring in CONUS in terms of geographical locations, severity, triggering weather, or basin morphometry. This study describes a comprehensive dataset consisting of more than half a million flood events extracted from 6,301 USGS flow records and radar-rainfall fields from 2002 to 2013, using the characteristic point method. The database features event duration; first- (mass center) and second- (spreading) order moments of both precipitation and flow, flow peak and percentile, event runoff coefficient, base flow, and information on the basin geomorphology. It can support flood modeling, geomorphological and geophysical impact studies, and instantaneous unit hydrograph and risk analyses, among other investigations. Preliminary data analysis conducted in this study shows that the spatial pattern of flood events affected by snowmelt correlates well with the mean annual snowfall accumulation pattern across CONUS, the basin morphometry affects the number of flood events and peak flows, and the concentration time and spreadness of the flood events can be related to the precipitation first- and second-order moments.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Prof. Emmanouil Anagnostou, manos@uconn.edu

Abstract

Notwithstanding the rich record of hydrometric observations compiled by the U.S. Geological Survey (USGS) across the contiguous United States (CONUS), flood event catalogs are sparse and incomplete. Available databases or inventories are mostly survey- or report-based, impact oriented, or limited to flash floods. These data do not represent the full range of flood events occurring in CONUS in terms of geographical locations, severity, triggering weather, or basin morphometry. This study describes a comprehensive dataset consisting of more than half a million flood events extracted from 6,301 USGS flow records and radar-rainfall fields from 2002 to 2013, using the characteristic point method. The database features event duration; first- (mass center) and second- (spreading) order moments of both precipitation and flow, flow peak and percentile, event runoff coefficient, base flow, and information on the basin geomorphology. It can support flood modeling, geomorphological and geophysical impact studies, and instantaneous unit hydrograph and risk analyses, among other investigations. Preliminary data analysis conducted in this study shows that the spatial pattern of flood events affected by snowmelt correlates well with the mean annual snowfall accumulation pattern across CONUS, the basin morphometry affects the number of flood events and peak flows, and the concentration time and spreadness of the flood events can be related to the precipitation first- and second-order moments.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Prof. Emmanouil Anagnostou, manos@uconn.edu
Save
  • Adhikari, P., Y. Hong, K. R. Douglas, D. B. Kirschbaum, J. Gourley, R. Adler, and G. R. Brakenridge, 2010: A digitized global flood inventory (1998–2008): Compilation and preliminary results. Nat. Hazards, 55, 405422, doi:10.1007/s11069-010-9537-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Apel, H., G. Aronica, H. Kreibich, and A. Thieken, 2009: Flood risk analyses—How detailed do we need to be? Nat. Hazards, 49, 7998, doi:10.1007/s11069-008-9277-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calianno, M., I. Ruin, and J. J. Gourley, 2013: Supplementing flash flood reports with impact classifications. J. Hydrol., 477, 116, doi:10.1016/j.jhydrol.2012.09.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, J. E., 1987: Hydraulics and basin morphometry of the largest flash floods in the conterminous United States. J. Hydrol., 93, 313338, doi:10.1016/0022-1694(87)90102-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diakakis, M., S. Mavroulis, and G. Deligiannakis, 2012: Floods in Greece, a statistical and spatial approach. Nat. Hazards, 62, 485500, doi:10.1007/s11069-012-0090-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, S., H. Gu, J. Wen, K. Chen, and A. Van Rompaey, 2015: Detecting flood variations in Shanghai over 1949–2009 with Mann-Kendall tests and a newspaper-based database. Water, 7, 18081824, doi:10.3390/w7051808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaume, E., and Coauthors, 2009: A compilation of data on European flash floods. J. Hydrol., 367, 7078, doi:10.1016/j.jhydrol.2008.12.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., J. M. Erlingis, T. M. Smith, K. L. Ortega, and Y. Hong, 2010: Remote collection and analysis of witness reports on flash floods. J. Hydrol., 394, 5362, doi:10.1016/j.jhydrol.2010.05.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., and Coauthors, 2013: A unified flash flood database across the United States. Bull. Amer. Meteor. Soc., 94, 799805, doi:10.1175/BAMS-D-12-00198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, J., and Coauthors, 2015: A European flood database: Facilitating comprehensive flood research beyond administrative boundaries. Proc. Int. Assoc. Hydrol. Sci., 370, 8995, doi:10.5194/piahs-370-89-2015.

    • Search Google Scholar
    • Export Citation
  • Jayakrishnan, R., R. Srinivasan, C. Santhi, and J. Arnold, 2005: Advances in the application of the SWAT model for water resources management. Hydrol. Processes, 19, 749762, doi:10.1002/hyp.5624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klazura, G. E., and D. A. Imy, 1993: A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74, 12931311, doi:10.1175/1520-0477(1993)074<1293:ADOTIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, B., K. Verdin, and A. Jarvis, 2006: HydroSHEDS technical documentation, version 1.0. U.S. World Wildlife Fund, 27 pp. [Available online at https://hydrosheds.cr.usgs.gov/HydroSHEDS_TechDoc_v10.doc.]

  • Mei, Y., and E. N. Anagnostou, 2015: A hydrograph separation method based on information from rainfall and runoff records. J. Hydrol., 523, 636649, doi:10.1016/j.jhydrol.2015.01.083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, D., and M. Markus, 2014: Analysis of a changing hydrologic flood regime using the Variable Infiltration Capacity model. J. Hydrol., 515, 267280, doi:10.1016/j.jhydrol.2014.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigon, R., M. Bancheri, G. Formetta, and A. de Lavenne, 2016: The geomorphological unit hydrograph from a historical-critical perspective. Earth Surf. Processes Landforms, 47, 2737, doi:10.1002/esp.3855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, M., J. Santos, and M. Fragoso, 2015: Historical damaging flood records for 1871–2011 in Northern Portugal and underlying atmospheric forcings. J. Hydrol., 530, 591603, doi:10.1016/j.jhydrol.2015.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., Y. Hong, K. Zhang, H. Li, and Z. Hao, 2016a: Refining a distributed linear reservoir routing method to improve performance of the CREST model. J. Hydrol. Eng., 22, doi:10.1061/(ASCE)HE.1943-5584.0001442.

    • Search Google Scholar
    • Export Citation
  • Shen, X., H. J. Vergara, E. I. Nikolopoulos, E. N. Anagnostou, Y. Hong, Z. Hao, K. Zhang, and K. Mao, 2016b: GDBC: A tool for generating global-scale distributed basin morphometry. Environ. Modell. Software, 83, 212223, doi:10.1016/j.envsoft.2016.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, H., J. S. Kimball, N. Mantua, and J. Stanford, 2011: Automated upscaling of river networks for macroscale hydrological modeling. Water Resour. Res., 47, W03517, doi:10.1029/2009WR008871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y.-G., B. He, S.-L. Chung, M. A. Menzies, and F. A. Frey, 2004: Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology, 32, 917920, doi:10.1130/G20602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zoccatelli, D., M. Borga, A. Viglione, G. Chirico, and G. Blöschl, 2011: Spatial moments of catchment rainfall: Rainfall spatial organisation, basin morphology, and flood response. Hydrol. Earth Syst. Sci., 15, 37673783, doi:10.5194/hess-15-3767-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1912 467 40
PDF Downloads 663 188 12