Decadal Climate Variability and Predictability: Challenges and Opportunities

Christophe Cassou CECI, CNRS-Cerfacs, Université de Toulouse, Toulouse, France

Search for other papers by Christophe Cassou in
Current site
Google Scholar
PubMed
Close
,
Yochanan Kushnir Lamont-Doherty Earth Observatory, Palisades, New York

Search for other papers by Yochanan Kushnir in
Current site
Google Scholar
PubMed
Close
,
Ed Hawkins National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Ed Hawkins in
Current site
Google Scholar
PubMed
Close
,
Anna Pirani Université Paris-Saclay, Saint Aubin, France, and The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

Search for other papers by Anna Pirani in
Current site
Google Scholar
PubMed
Close
,
Fred Kucharski The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

Search for other papers by Fred Kucharski in
Current site
Google Scholar
PubMed
Close
,
In-Sik Kang Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by In-Sik Kang in
Current site
Google Scholar
PubMed
Close
, and
Nico Caltabiano International CLIVAR Global Project Office, Southampton, United Kingdom

Search for other papers by Nico Caltabiano in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The study of Decadal Climate Variability (DCV) and Predictability is the interdisciplinary endeavor to characterize, understand, attribute, simulate, and predict the slow, multiyear variations of climate at global (e.g., the recent slowdown of global mean temperature rise in the early 2000s) and regional (e.g., decadal modulation of hurricane activity in the Atlantic, ongoing drought in California or in the Sahel in the 1970s–80s, etc.) scales. This study remains very challenging despite decades of research, extensive progress in climate system modeling, and improvements in the availability and coverage of a wide variety of observations. Considerable obstacles in applying this knowledge to actual predictions remain.

This short article is a succint review paper about DCV and predictability. Based on listed issues and priorities, it also proposes a unifying theme referred to as “drivers of teleconnectivity” as a backbone to address and structure the core DCV research challenge. This framework goes beyond a preoccupation with changes in the global mean temperature and directly addresses the regional impacts of external (natural and anthropogenic) climate forcing and internal climate interactions; it thus explicitly deals with the societal needs for region-specific climate information. Such a framework also enables the integration of efforts in a large international research community toward advancing the observation, characterization, understanding, and prediction of DCV. Recommendations to make progress are provided as part of the contribution of the CLIVAR “DCVP Research Focus” group.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Christophe Cassou, cassou@cerfacs.fr

Abstract

The study of Decadal Climate Variability (DCV) and Predictability is the interdisciplinary endeavor to characterize, understand, attribute, simulate, and predict the slow, multiyear variations of climate at global (e.g., the recent slowdown of global mean temperature rise in the early 2000s) and regional (e.g., decadal modulation of hurricane activity in the Atlantic, ongoing drought in California or in the Sahel in the 1970s–80s, etc.) scales. This study remains very challenging despite decades of research, extensive progress in climate system modeling, and improvements in the availability and coverage of a wide variety of observations. Considerable obstacles in applying this knowledge to actual predictions remain.

This short article is a succint review paper about DCV and predictability. Based on listed issues and priorities, it also proposes a unifying theme referred to as “drivers of teleconnectivity” as a backbone to address and structure the core DCV research challenge. This framework goes beyond a preoccupation with changes in the global mean temperature and directly addresses the regional impacts of external (natural and anthropogenic) climate forcing and internal climate interactions; it thus explicitly deals with the societal needs for region-specific climate information. Such a framework also enables the integration of efforts in a large international research community toward advancing the observation, characterization, understanding, and prediction of DCV. Recommendations to make progress are provided as part of the contribution of the CLIVAR “DCVP Research Focus” group.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Christophe Cassou, cassou@cerfacs.fr
Save
  • Allan, R., P. Brohan, G. P. Compo, R. Stone, J. Luterbacher, and S. Bronnimann, 2011: The international Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative. Bull. Amer. Meteor. Soc., 92, 14211425, https://doi.org/10.1175/2011BAMS3218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., C. Liu, N. G. Loeb, M. D. Palmer, M. Roberts, D. Smith, and P.-L. Vidale, 2014: Changes in global net radiative imbalance 1985–2012. Geophys. Res. Lett., 41, 55885597, https://doi.org/10.1002/2014GL060962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ba, J., and Coauthors, 2014: A multi-model comparison of Atlantic multidecadal variability. Climate Dyn., 43, 23332348, https://doi.org/10.1007/s00382-014-2056-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrier, N., C. Cassou, J. Deshayes, and A.-M. Treguier, 2014: Response of North Atlantic Ocean circulation to atmospheric weather regimes. J. Phys. Oceanogr., 44, 179201, https://doi.org/10.1175/JPO-D-12-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G., and Coauthors, 2016: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev., 9, 37513777, https://doi.org/10.5194/gmd-9-3751-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, https://doi.org/10.1038/nature10946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., and J. Marshall, 2016: Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review. Rev. Geophys., 54, 563, https://doi.org/10.1002/2015RG000493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, L. N. Murphy, and K. Bellomo, 2017: Low-pass filtering, heat flux, and Atlantic multidecadal variability. J. Climate, 30, 75297553, https://doi.org/10.1175/JCLI-D-16-0810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., and C. Cassou, 2013: Opposite CMIP3/CMIP5 trends in the wintertime northern annular mode explained by combined local sea ice and remote tropical influences. Geophys. Res. Lett., 40, 36823687, https://doi.org/10.1002/grl.50643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., T. Mochizuki, A. Timmermann, M. Kimoto, and M. Watanabe, 2016: Potential tropical Atlantic impacts on Pacific decadal climate trends. Geophys. Res. Lett., 43, 71437151, https://doi.org/10.1002/2016GL069544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chylek, P., M. K. Dubey, G. Lesins, J. Li, and N. Hengartner, 2014: Imprint of the Atlantic multi-decadal oscillation and Pacific decadal oscillation on southwestern US climate: Past, present, and future. Climate Dyn., 43, 119129, https://doi.org/10.1007/s00382-013-1933-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A., K. Bellomo, L. N. Murphy, M. A. Cane, T. Mauritsen, G. Radel, and B. Stevens, 2015: The Atlantic multidecadal oscillation without a role for ocean circulation. Science, 350, 320324, https://doi.org/10.1126/science.aab3980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2016: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: inter-annual to decadal variability. Ocean Modell., 97, 6590, https://doi.org/10.1016/j.ocemod.2015.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, L. Zhang, R. Zhang, G. A. Vecchi, and X. Yang, 2017: The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation. J. Climate, 30, 37893805, https://doi.org/10.1175/JCLI-D-16-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and A. Phillips, 2017: An overview of decadal-scale sea surface temperature variability in the observational record. CLIVAR Exchanges/PAGES Magazine, joint issue, https://doi.org/10.22498/pages.25.1.2.

    • Crossref
    • Export Citation
  • Deser, C., J. W. Hurrell, and A. S. Phillips, 2016: The role of the North Atlantic Oscillation in European climate projections. Climate Dyn., 49, 31413157, https://doi.org/10.1007/s00382-016-3502-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, H., R. J. Greatbatch, M. Latif, W. Park, and R. Gerdes, 2013: Hindcast of the 1976/77 and 1998/99 Climate Shifts in the Pacific. J. Climate, 26, 76507661, https://doi.org/10.1175/JCLI-D-12-00626.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., and Coauthors, 2013: Initialized near-term regional climate change prediction. Nat. Commun., 4, 1715, https://doi.org/10.1038/ncomms2704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and A. Dai, 2015: The influence of the Interdecadal Pacific Oscillation on temperature and precipitation over the globe. Climate Dyn., 45, 26672681, https://doi.org/10.1007/s00382-015-2500-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, and A. A. Scaife, 2006: Multidecadal modulation of El Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys. Res. Lett., 33, L08705, https://doi.org/10.1029/2006GL025766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drijfhout, S. S., A. T. Blaker, S. A. Josey, A. J. G. Nurser, B. Sinha, and M. A. Balmaseda, 2014: Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett., 41, 78687874, https://doi.org/10.1002/2014GL061456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunstone, N., D. Smith, A. Scaife, L. Hermanson, R. Eade, N. Robinson, M. Andrews, and J. Knight, 2016: Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci., 9, 809814, https://doi.org/10.1038/ngeo2824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eade, R., D. Smith, A. Scaife, E. Wallace, N. Dunstone, L. Hermanson, and N. Robinson, 2014: Do seasonal-to-decadal climate predictions under-estimate the predictability of the real world? Geophys. Res. Lett., 41, 56205628, https://doi.org/10.1002/2014GL061146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., and Coauthors, 2017: A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, https://doi.org/10.1038/sdata.2017.88.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Slowdown of surface greenhouse warming due to recent Pacific trade wind acceleration. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, T., C. Deser, and D. P. Schneider, 2014: Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys. Res. Lett., 41, 24192426, https://doi.org/10.1002/2014GL059239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., 2016: Modelling interdecadal climate variability and the role of the ocean. WIREs Climate Change, 8, https://doi.org/10.1002/wcc.441.

    • Search Google Scholar
    • Export Citation
  • Fučkar, N. S., D. Volpi, V. Guemas, and F. J. Doblas-Reyes, 2014: A posteriori adjustment of near-term climate predictions: Accounting for the drift dependence on the initial conditions. Geophys. Res. Lett., 41, 52005207, https://doi.org/10.1002/2014GL060815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and Coauthors, 2016: Making sense of the early-2000s global warming slowdown. Nat. Climate Change, 6, 224228, https://doi.org/10.1038/nclimate2938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., F. W. Zwiers, A. J. Weaver, and P. A. Stott, 2003: Detection of human influence on sea level pressure. Nature, 422, 292294, https://doi.org/10.1038/nature01487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2011: Warm and saline events embedded in the meridional circulation of the northern North Atlantic. J. Geophys. Res., 116, C03006, https://doi.org/10.1029/2010JC006275.

    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2014: Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Climate Dyn., 43, 13571379, https://doi.org/10.1007/s00382-013-1951-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., B. Dong, J. Robson, and R. Sutton, 2014: The interpretation and use of biases in decadal climate predictions. J. Climate, 27, 29312947, https://doi.org/10.1175/JCLI-D-13-00473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hedemann, C., T. Mauritsen, J. Jungclaus, and J. Marotzke, 2017: The subtle origins of surface-warming hiatuses. Nat. Climate Change, 7, 336339, https://doi.org/10.1038/nclimate3274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., and Coauthors, 2017: Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation. Environ. Res. Lett., 12, 044011, https://doi.org/10.1088/1748-9326/aa5cc8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hermanson, L., R. Eade, N. H. Robinson, N. J. Dunstone, M. B. Andrews, J. R. Knight, A. A. Scaife, and D. Smith, 2014: Forecast cooling of the Atlantic subpolar gyre and associated impacts. Geophys. Res. Lett., 41, 51675174, https://doi.org/10.1002/2014GL060420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huber, M., and R. Knutti, 2014: Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nat. Geosci., 7, 651656, https://doi.org/10.1038/ngeo2228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 1996: Climate Change 1995: The Science of Climate Change. Cambridge University Press, 572 pp.

  • Karspeck, A. R., and Coauthors, 2015: Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Climate Dyn., 49, 957982, http://doi.org/10.1007/s00382-015-2787-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, C., M. Ting, R. Seager, and Y. Kushnir, 2012: The relative contributions of radiative forcing and internal climate variability to the late 20th century winter drying of the Mediterranean region. Climate Dyn., 38, 20012015, https://doi.org/10.1007/s00382-011-1221-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., G. J. Boer, W. J. Merryfield, J. F. Scinocca, and W.-S. Lee, 2012: Statistical adjustment of decadal predictions in a changing climate. Geophys. Res. Lett., 39, L19705, https://doi.org/10.1029/2012GL052815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys. Res. Lett., 39, L10701, https://doi.org/10.1029/2012GL051644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and Coauthors, 2013: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 9531028.

    • Search Google Scholar
    • Export Citation
  • Kociuba, G., and S. B. Power, 2015: Inability of CMIP5 models to simulate recent strengthening of the Walker circulation: implications for projections. J. Climate, 28, 2035, https://doi.org/10.1175/JCLI-D-13-00752.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2016: The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci., 9, 669673, https://doi.org/10.1038/ngeo2770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., and Coauthors, 2016: Atlantic forcing of Pacific decadal variability. Climate Dyn., 46, 23372351, https://doi.org/10.1007/s00382-015-2705-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuntz, L. B., and D. P. Schrag, 2016: Impact of Asian aerosol forcing on tropical Pacific circulation, and the relationship to global temperature trends. J. Geophys. Res. Atmos., 121, 403414, 14 403–14 413, https://doi.org/10.1002/2016JD025430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, J. L., and D. H. Rind, 2009: How will Earth’s surface temperature change in future decades? Geophys. Res. Lett., 36, L15708, https://doi.org/10.1029/2009GL038932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewandowsky, S., J. S. Risbey, and N. Oreskes, 2016: The “pause” in global warming: Turning a routine fluctuation into a science problem. Bull. Amer. Meteor. Soc., 97, 723733, https://doi.org/10.1175/BAMS-D-14-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linsley, B. K., H. C. Wu, E. P. Dassié, and D. P. Schrag, 2015: Decadal changes in South Pacific sea surface temperatures and the relationship to the Pacific decadal oscillation and upper ocean heat content. Geophys. Res. Lett., 42, 23582366, https://doi.org/10.1002/2015GL063045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyu, K. and J.-Y. Yu, 2017: Climate impacts of the Atlantic multidecadal oscillation simulated in the CMIP5 models: a re-evaluation based on a revised index. Geophys. Res. Lett., 44, 38673876, https://doi.org/10.1002/2017GL072681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, https://doi.org/10.1038/nature18640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marotzke, J., and Coauthors, 2016: MiKlip—A National Research Project on Decadal Climate Prediction. Bull. Amer. Meteor. Soc., 97, 23792394, https://doi.org/10.1175/BAMS-D-15-00184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medhaug, I., and T. Furevik, 2011: North Atlantic 20th century multidecadal variability in coupled climate models: Sea surface temperature and ocean overturning circulation. Ocean Sci., 7, 389404, https://doi.org/10.5194/os-7-389-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medhaug, I., M. B. Slope, E. M. Fischer, and R. Knutti, 2017: Reconciling controversies about the “global warming hiatus.” Nature, 545, 4147, https://doi.org/10.1038/nature22315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2014a: Decadal climate prediction: An update from the trenches. Bull. Amer. Meteor. Soc., 95, 243267, https://doi.org/10.1175/BAMS-D-12-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., H. Teng, and J. M. Arblaster, 2014b: Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Climate Change, 4, 898902, https://doi.org/10.1038/nclimate2357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, B. D. Santer, and S.-P. Xie, 2016a: Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nat. Climate Chang., 6, 10051008, https://doi.org/10.1038/nclimate3107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, and H. Teng, 2016b: Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation. Nat. Commun., 7, https://doi.org/10.1038/ncomms11718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menary, M. B., D. L. R. Hodson, J. I. Robson, R. T. Sutton, R. A. Wood, and J. A. Hunt, 2015: Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability. Geophys. Res. Lett., 42, 59265934, https://doi.org/10.1002/2015GL064360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., and Coauthors, 2014: Predicting a decadal shift in North Atlantic climate variability using the GFDL forecast system. J. Climate, 27, 64726496, https://doi.org/10.1175/JCLI-D-13-00476.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific Decadal Oscillation, revisited. J. Climate, 29, 43994427,https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nidheesh, A. G., M. Lengaigne, J. Vialard, T. Izumo, A.S. Unnikrishnan, and C. Cassou, 2017: Influence of ENSO on Pacific Decadal Oscillation in CMIP models and observations. Climate Dyn., 49, 33093326, https://doi.org/10.1007/s00382-016-3514-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., M. Huber, T. Woollings, and L. Zanna, 2016: The signature of low-frequency oceanic forcing in the Atlantic multidecadal oscillation. Geophys. Res. Lett., 43, 28102818, https://doi.org/10.1002/2016GL067925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otterå, O. H., M. Bentsen, H. Drange, and L. Suo, 2010: External forcing as a metronome for the Atlantic multidecadal variability. Nat. Geosci., 3, 688694, https://doi.org/10.1038/ngeo955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, A. O., M. W. Schmidt, and P. Chang, 2015: Tropical North Atlantic subsurface warming events as a fingerprint for AMOC variability during Marine Isotope Stage 3. Paleoceanogr., 30, 14251436, https://doi.org/10.1002/2015PA002832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., G. Simpkins, and G. Magnusdottir, 2016: Multidecadal fluctuations of the North Atlantic Ocean and feedback on the winter climate in CMIP5 control simulations. J. Geophys. Res. Atmos., 121, 25712592, https://doi.org/10.1002/2015JD024107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., J. Kröger, R. J. Greatbatch, and W. Müller, 2016: Initialization shock in decadal hindcasts due to errors in wind stress over the tropical Pacific. Climate Dyn., 49, 26852693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qasmi, S., C. Cassou and J. Boé, 2017 : Teleconnection between Atlantic Multidecadal Variability and European temperature: Diversity and evaluation of the Coupled Model Intercomparison Project phase 5 models. Geophys. Res. Lett., 44, 11 140–11 149, https://doi.org/10.1002/2017GL074886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, D., C. A. Richardson, J. D. Scourse, P. G. Butler, P. Hollyman, A. Román-Gonzáleza, and I. R. Hall, 2017: Reconstructing North Atlantic marine climate variability using an absolutely-dated sclerochronological network. Palaeogeogr. Palaeoclimatol. Palaeoecol., 465, 333346, https://doi.org/10.1016/j.palaeo.2016.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J., and R. Sutton, 2016: A reversal of climate trends in the North Atlantic since 2005. Nat. Geosci., 9, 513517, https://doi.org/10.1038/ngeo2727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J., R. Sutton, K. Lohmann, D. Smith, and M. D. Palmer, 2012: Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Climate, 25, 41164134, https://doi.org/10.1175/JCLI-D-11-00443.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J., R. Sutton, and D. Smith, 2013: Predictable climate impacts of the decadal changes in the ocean in the 1990s. J. Climate, 26, 63296339, https://doi.org/10.1175/JCLI-D-12-00827.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., S. Nigam, and A. Kavvada, 2013: The Atlantic multidecadal oscillation in twentieth century climate simulations: Uneven progress from CMIP3 to CMIP5. Climate Dyn., 41, 33013315, https://doi.org/10.1007/s00382-013-1810-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., and C. Cassou, 2015: Combined influences of seasonal East Atlantic Pattern and North Atlantic Oscillation to excite Atlantic multidecadal variability in a climate model. Climate Dyn., 44, 229253, https://doi.org/10.1007/s00382-014-2176-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 27852810, https://doi.org/10.1175/JCLI-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Gomez, E., C. Cassou, Y. Ruprich-Robert, E. Fernandez, and L. Terray, 2016: Drifts dynamics in a coupled model initialized for decadal forecasts. Climate Dyn., 46, 18191840, https://doi.org/10.1007/s00382-015-2678-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2017: Causes of differences between model and satellite tropospheric warming rates. Nat. Geosci., 10, 478485, https://doi.org/10.1038/ngeo2973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: On the cause of the 1930s dust bowl. Science, 303, 18551859, https://doi.org/10.1126/science.1095048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2013: Real-time multi-model decadal climate predictions. Climate Dyn., 41, 28752888, https://doi.org/10.1007/s00382-012-1600-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2015: Earth’s energy imbalance since 1960 in observations and CMIP5 models. Geophys. Res. Lett., 42, 12051213, https://doi.org/10.1002/2014GL062669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2016: Role of the volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Climate Change, 6, 936940, https://doi.org/10.1038/nclimate3058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suckling, E., G. J. van Oldenborgh, J. M. Eden, and E. Hawkins, 2017: An empirical model for probabilistic decadal prediction: A global attribution and regional hindcasts. Climate Dyn., 48, 31153138, https://doi.org/10.1007/s00382-016-3255-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., P. Ortega, J. Mignot, E. Guilyardi, V. Masson-Delmotte, P. G. Butler, M. Khodri, and R. Séférian, 2015: Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions. Nat. Commun., 6, 6545, https://doi.org/10.1038/ncomms7545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, N. F., and P. J. Kushner, 2015: Does external forcing interfere with the AMOC’s influence on North Atlantic sea surface temperature? J. Climate, 28, 63096323, https://doi.org/10.1175/JCLI-D-14-00664.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An Overview of CMIP5 and the Experiment Design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thoma, M., R. J. Greatbatch, C. Kadow, and R. Gerdes, 2015: Decadal hindcasts initialized using observed surface wind stress: evaluation and prediction out to 2024. Geophys. Res. Lett., 42, 64546461, https://doi.org/10.1002/2015GL064833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tierney, J. E., and Coauthors, 2015: Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanogr., 30, 226252, https://doi.org/10.1002/2014PA002717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., and S. Woolnough, 2014: Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts. Climate Dyn., 43, 28892913, https://doi.org/10.1007/s00382-013-1691-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, K. von Schuckmann, and L. Cheng, 2016: Insights into Earth’s energy imbalance from multiple sources. J. Climate, 29, 74957505, https://doi.org/10.1175/JCLI-D-16-0339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Dijk, A. I. J. M., H. E. Beck, R. S. Crosbie, R. A. M. de Jeu, Y. Y. Liu, G. M. Podger, B. Timbal, and N. R. Viney, 2013: The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res., 49, https://doi.org/10.1002/wrcr.20123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., F. J. Doblas-Reyes, B. Wouters, and W. Hazeleger, 2012: Decadal prediction skill in a multi-model ensemble. Climate Dyn., 38, 12631280, https://doi.org/10.1007/s00382-012-1313-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., S. Dong, A. T. Evan, G. R. Foltz, and S.-K. Lee, 2012: Multidecadal covariability of North Atlantic sea surface temperature, African dust, Sahel rainfall, and Atlantic hurricanes. J. Climate, 25, 54045415, https://doi.org/10.1175/JCLI-D-11-00413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Y. Kosaka, 2017: What caused the surface warming hiatus from 1998–2013? Curr. Climate Change Rep., 3, 128, https://doi.org/10.1007/s40641-017-0063-0.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., B. Lu, and B. Xiang, 2013: Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nat. Geosci., 6, 828832, https://doi.org/10.1038/ngeo1931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, and Y. Okumura, 2016: Distinct energy budgets for anthropogenic and natural changes during global warming hiatus. Nat. Geosci., 9, 2933, https://doi.org/10.1038/ngeo2581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, X.-H.,