Satellite-Based Atmospheric Infrared Sounder Development and Applications

W. Paul Menzel Cooperative Institute for Meteorological Satellites Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by W. Paul Menzel in
Current site
Google Scholar
PubMed
Close
,
Timothy J. Schmit NOAA/NESDIS/Center for Satellite Applications and Research, Madison, Wisconsin

Search for other papers by Timothy J. Schmit in
Current site
Google Scholar
PubMed
Close
,
Peng Zhang National Satellite Meteorological Center, China Meteorological Administration, Beijing, China

Search for other papers by Peng Zhang in
Current site
Google Scholar
PubMed
Close
, and
Jun Li Cooperative Institute for Meteorological Satellites Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Jun Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric sounding of the vertical changes in temperature and moisture is one of the key contributions from meteorological satellites. The concept of using satellite infrared radiation observations for retrieving atmospheric temperature was first proposed by Jean I. F. King. Lewis D. Kaplan noted that the radiation from different spectral regions are primarily emanating from different atmospheric layers, which can be used to retrieve the atmospheric temperature at different heights in the atmosphere. The United States launched the first meteorological satellite Television Infrared Observation Satellite-1 (TIROS-1) on 1 April 1960, opening a new era of observing the Earth and its atmosphere from space. Since then, hundreds of meteorological satellites have been launched by space agencies, including those in Europe, China, Japan, Russia, India, Korea, and others. With the rapid development of atmospheric sounding technology and radiative transfer models, it became possible to determine the atmospheric state from combined satellite- and ground-based measurements. With advances in computing power, forecast model development, data assimilation, and observing technologies, numerical weather prediction (NWP) has achieved consistently better results and thereby improved the prediction and early warning of severe weather events as well as fostered the initial monitoring of global climate change. The purpose of this paper is to summarize and discuss the development of satellite vertical sounding capability, quantitative profile retrieval theory, and applications of satellite-based atmospheric sounding measurements, with a focus on infrared sounding.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Jun Li, jun.li@ssec.wisc.edu

Abstract

Atmospheric sounding of the vertical changes in temperature and moisture is one of the key contributions from meteorological satellites. The concept of using satellite infrared radiation observations for retrieving atmospheric temperature was first proposed by Jean I. F. King. Lewis D. Kaplan noted that the radiation from different spectral regions are primarily emanating from different atmospheric layers, which can be used to retrieve the atmospheric temperature at different heights in the atmosphere. The United States launched the first meteorological satellite Television Infrared Observation Satellite-1 (TIROS-1) on 1 April 1960, opening a new era of observing the Earth and its atmosphere from space. Since then, hundreds of meteorological satellites have been launched by space agencies, including those in Europe, China, Japan, Russia, India, Korea, and others. With the rapid development of atmospheric sounding technology and radiative transfer models, it became possible to determine the atmospheric state from combined satellite- and ground-based measurements. With advances in computing power, forecast model development, data assimilation, and observing technologies, numerical weather prediction (NWP) has achieved consistently better results and thereby improved the prediction and early warning of severe weather events as well as fostered the initial monitoring of global climate change. The purpose of this paper is to summarize and discuss the development of satellite vertical sounding capability, quantitative profile retrieval theory, and applications of satellite-based atmospheric sounding measurements, with a focus on infrared sounding.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Jun Li, jun.li@ssec.wisc.edu
Save
  • Allan, R. P., M. A. Ringer, and A. Slingo, 2003: Evaluation of moisture in the Hadley Centre climate model using simulations of HIRS water-vapour channel radiances. Quart. J. Roy. Meteor. Soc., 129, 33713389, https://doi.org/10.1256/qj.02.217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amato, U., V. Cuomo, R. Rizzi, and C. Serio, 1997: Evaluating the effect of the inter-relationships among the different spectral bands on IASI performance. Quart. J. Roy. Meteor. Soc., 123, 22312244, https://doi.org/10.1002/qj.49712354405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersson, E., J. Pailleux, J.-N. Thépaut, J. R. Eyre, A. P. McNally, G. A. Kelly, and P. Courtier, 1994: Use of cloud-cleared radiances in three/four-dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 120, 627653, https://doi.org/10.1002/qj.49712051707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R., W. Schreiner, S. M. Exner, D. Hunt, Y. Kuo, S. Sokolovskiy, R. Ware, and X. Zou, 1997: GPS sounding of the atmosphere from low Earth orbit: Preliminary results and potential impact on numerical weather prediction. The Global Positioning System for the Geosciences: Summary and Proc. Workshop on Improving the GPS Reference Station Infrastructure for Earth, Oceanic, and Atmospheric Science Applications, Boulder, CO, National Research Council, 114–124.

  • August, T., and Coauthors, 2012: IASI on MetOp-A: Operational level 2 retrievals after five years in orbit. J. Quant. Spectrosc. Radiat. Transfer, 113, 13401371, https://doi.org/10.1016/j.jqsrt.2012.02.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auligné, T., F. Rabier, L. Lavanant, and M. Dahoui, 2003: First results of the assimilation of AIRS data in Météo-France numerical weather prediction model. Proc. 13th Int. TOVS Study Conf., Sainte Adele, QC, Canada, International TOVS Working Group, 74–79.

  • Baordo, F., and A. J. Geer, 2016: Assimilation of SSMIS humidity-sounding channels in all-sky conditions over land using a dynamic emissivity retrieval. Quart. J. Roy. Meteor. Soc., 142, 28542866, https://doi.org/10.1002/qj.2873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, H. J., 2001: The Cross-Track Infrared Sounder (CrIS): A sensor for operational meteorological remote sensing. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Sydney, NSW, Australia, Institute of Electrical and Electronics Engineers, 1341–1343, https://doi.org/10.1109/IGARSS.2001.976838.

    • Crossref
    • Export Citation
  • Cameron, J., A. Collard, and S. English, 2005: Operational use of AIRS observations at the Met Office. Proc. 14th Int. TOVS Study Conf., Beijing, China, International TOVS Working Group, 731–737.

  • Camps-Valls, G., J. Munoz-Mari, L. Gomez-Chova, L. Guanter, and X. Calbet, 2012: Nonlinear statistical retrieval of atmospheric profiles from MetOp-IASI and MTG-IRS infrared sounding data. IEEE Trans. Geosci. Remote Sens., 50, 17591769, https://doi.org/10.1109/TGRS.2011.2168963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardinali, C., 2009: Monitoring the observation impact on the short-range forecast. Quart. J. Roy. Meteor. Soc., 135, 239250, https://doi.org/10.1002/qj.366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., 1970: Inverse problems in radiative transfer: Determination of atmospheric parameters. J. Atmos. Sci., 27, 960967, https://doi.org/10.1175/1520-0469(1970)027<0960:IPIRTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., C. Barnet, E. T. Olsen, L. Chen, and E. Maddy, 2005: On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2. Geophys. Res. Lett., 32, L22803, https://doi.org/10.1029/2005GL024165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, https://doi.org/10.1175/BAMS-87-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., C. Cao, and W. P. Menzel, 2013: Intersatellite calibration of NOAA HIRS CO2 channels for climate studies. J. Geophys. Res. Atmos., 118, 51905203, https://doi.org/10.1002/jgrd.50447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collard, A. D., 2007: Selection of IASI channels for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 133, 19771991, https://doi.org/10.1002/qj.178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collard, A. D., and A. P. McNally, 2009: The assimilation of Infrared Atmospheric Sounding Interferometer radiances at ECMWF. Quart. J. Roy. Meteor. Soc., 135, 10441058, https://doi.org/10.1002/qj.410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collard, A. D., J. Derber, R. Treadon, N. Atkinson, J. Jung, and K. Garrett, 2012: Toward assimilation of CrIS and ATMS in the NCEP global model. Proc. 18th Int. TOVS Study Conf., Toulouse, France, International TOVS Working Group, 1.18.

  • Conway, E. M., 2008: Atmospheric Science at NASA—A History. Johns Hopkins University Press, 386 pp.

  • Crevoisier, C., S. Heilliette, A. Chédin, S. Serrar, R. Armante, and N. A. Scott, 2004: Midtropospheric CO2 concentration retrieval from AIRS observations in the tropics. Geophys. Res. Lett., 31, L17106, https://doi.org/10.1029/2004GL020141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crevoisier, C., A. Chédin, H. Matsueda, T. Machida, R. Armante, and N. A. Scott, 2009: First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations. Atmos. Chem. Phys., 9, 47974810, https://doi.org/10.5194/acp-9-4797-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dash, P., A. Ignatov, Y. Kihai, and J. Sapper, 2010: The SST Quality Monitor (SQUAM). J. Atmos. Oceanic Technol., 27, 18991917, https://doi.org/10.1175/2010JTECHO756.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Divakarla, M., and Coauthors, 2014: The CrIMSS EDR algorithm: Characterization, optimization, and validation. J. Geophys. Res. Atmos., 119, 49534977, https://doi.org/10.1002/2013JD020438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., and Coauthors, 2009: An overview of a new Chinese weather satellite FY-3A. Bull. Amer. Meteor. Soc., 90, 15311544, https://doi.org/10.1175/2009BAMS2798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • English, S. J., R. J. Renshaw, P. C. Dibben, A. J. Smith, P. J. Rayer, C. Poulsen, F. W. Saunders, and J. R. Eyre, 2000: A comparison of the impact of TOVS arid ATOVS satellite sounding data on the accuracy of numerical weather forecasts. Quart. J. Roy. Meteor. Soc., 126, 29112931, https://doi.org/10.1002/qj.49712656915.

    • Search Google Scholar
    • Export Citation
  • Eresmaa, R., 2014: Imager-assisted cloud detection for assimilation of Infrared Atmospheric Sounding Interferometer radiances. Quart. J. Roy. Meteor. Soc., 140, 23422352, https://doi.org/10.1002/qj.2304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyre, J. R., 1989: Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I: Theory and simulation for TOVS. Quart. J. Roy. Meteor. Soc., 115, 10011026, https://doi.org/10.1002/qj.49711548902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyre, J. R., 1991: A fast radiative transfer model for satellite sounding systems. ECMWF Tech. Memo. 176, 28 pp.

  • Eyre, J. R., 1997: Variational assimilation of remotely-sensed observations of the atmosphere. J. Meteor. Soc. Japan, 75, 331338, https://doi.org/10.2151/jmsj1965.75.1B_331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyre, J. R., 2008: Progress achieved on assimilation of satellite data in numerical weather prediction over the last 30 years. Seminar on Recent Developments in the Use of Satellite Observations in Numerical Weather Prediction, Reading, United Kingdom, ECMWF, 1–27, www.ecmwf.int/sites/default/files/elibrary/2008/9341-progress-achieved-assimilation-satellite-data-numerical-weather-prediction-over-last-30-years.pdf.

  • Eyre, J. R., and W. P. Menzel, 1989: Retrieval of cloud parameters from satellite sounder data: A simulation study. J. Appl. Meteor., 28, 267275, https://doi.org/10.1175/1520-0450(1989)028<0267:ROCPFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyre, J. R., G. A. Kelly, A. P. McNally, E. Andersson, and A. Persson, 1993: Assimilation of TOVS radiance information through one-dimensional variational analysis. Quart. J. Roy. Meteor. Soc., 119, 14271463, https://doi.org/10.1002/qj.49711951411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fishbach, F. F., 1965: A satellite method for temperature and pressure below 24 km. Bull. Amer. Meteor. Soc., 9, 528532.

  • Fleming, H., M. Goldberg, and D. Crosby, 1986: Minimum variance simultaneous retrieval of temperature and water vapor from satellite radiance measurements. Proc. Second Conf. on Satellite Meteorology/Remote Sensing and Applications, Williamsburg, VA, Amer. Meteor. Soc., 20–23.

  • Gavaghan, H., 1998: Something New under the Sun—Satellites and the Beginning of the Space Age. Springer-Verlag, 300 pp.

    • Crossref
    • Export Citation
  • Gettelman, A., D. E. Kinnison, T. J. Dunkerton, and G. P. Brasseur, 2004: Impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res., 109, D22101, https://doi.org/10.1029/2004JD004878.

    • Search Google Scholar
    • Export Citation
  • Guerbette, J., J.-F. Mahfouf, and M. Plu, 2016: Towards the assimilation of all-sky microwave radiances from the SAPHIR humidity sounder in a limited area NWP model over tropical regions. Tellus, 68A, 28620, https://doi.org/10.3402/tellusa.v68.28620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guidard, V., N. Fourrié, P. Brousseau, and F. Rabier, 2011: Impact of IASI assimilation at global and convective scales and challenges for the assimilation of cloudy scenes. Quart. J. Roy. Meteor. Soc., 137, 19751987, https://doi.org/10.1002/qj.928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Y., P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, 2006: JCSDA Community Radiative Transfer Model (CRTM)—Version 1. NOAA Tech. Rep. 122, 33 pp.

  • Hanel, R. A., B. Schlachman, F. D. Clark, C. H. Prokesh, J. B. Taylor, W. M. Wilson, and L. Chaney, 1970: The NIMBUS-3 Michelson interferometer. Appl. Opt., 9, 17671773, https://doi.org/10.1364/AO.9.001767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayden, C. M., 1971: Nimbus 3 “SIRS” pressure height profiles as compared to radiosondes. Mon. Wea. Rev., 99, 659664, https://doi.org/10.1175/1520-0493(1971)099<0659:NPHPAC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayden, C. M., 1988: GOES-VAS simultaneous temperature–moisture retrieval algorithm. J. Appl. Meteor., 27, 705733, https://doi.org/10.1175/1520-0450(1988)027<0705:GVSTMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hilton, F., N. C. Atkinson, S. J. English, and J. R. Eyre, 2009: Assimilation of IASI at the Met Office and assessment of its impact through observing system experiments. Quart. J. Roy. Meteor. Soc., 135, 495505, https://doi.org/10.1002/qj.379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H.-L., and W. L. Smith, 2004: Apperception of clouds in AIRS data. Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Reading, United Kingdom, ECMWF, 155–169.

  • Huang, H.-L., P. Yang, H. Wei, B. A. Baum, Y. Hu, P. Antonelli, and S. A. Ackerman, 2004: Inference of ice cloud properties from high spectral resolution infrared observations. IEEE Trans. Geosci. Remote Sens., 42, 842853, https://doi.org/10.1109/TGRS.2003.822752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, and S. A. Clough, 2003: Evaluation of upper tropospheric water vapor in the NCAR Community Climate Model (CCM3) using modeled and observed HIRS radiances. J. Geophys. Res., 108, 4037, https://doi.org/10.1029/2002JD002539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joo, S., J. Eyre, and R. Marriott, 2013: The impact of MetOp and other satellite data within the Met Office global NWP system using an adjoint-based sensitivity method. Mon. Wea. Rev., 141, 33313342, https://doi.org/10.1175/MWR-D-12-00232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, L. D., 1959: Inference of atmospheric structure from remote radiation measurements. J. Opt. Soc. Amer., 49, 10041007, https://doi.org/10.1364/JOSA.49.001004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karagulian, F., L. Clarisse, C. Clerbaux, A. J. Prata, D. Hurtmans, and P.-F. Coheur, 2010: Detection of volcanic SO2 ash, and H2SO4 using the Infrared Atmospheric Sounding Interferometer (IASI). J. Geophys. Res., 115, D00L02, https://doi.org/10.1029/2009JD012786.

    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., T. P. Whorf, M. Wahlen, and J. Vanderplicht, 1995: Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature, 375, 666670, https://doi.org/10.1038/375666a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, G., G. Mills, and W. L. Smith, 1978: Impact of Nimbus-6 temperature soundings on Australian regional forecasts. Bull. Amer. Meteor. Soc., 59, 393405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, J. I. F., 1956: The radiative heat transfer of planet Earth. Scientific Uses of Earth Satellites. University of Michigan Press, 133–136.

  • Lavanant, L., and Coauthors, 2011: Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances. Quart. J. Roy. Meteor. Soc., 137, 19882003, https://doi.org/10.1002/qj.917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., and Coauthors, 2005: Impact of Atmospheric Infrared Sounder observations on weather forecasts. Eos, Trans. Amer. Geophys. Union, 86, 109116, https://doi.org/10.1029/2005EO110002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., and Coauthors, 2006a: Improving global analysis and forecasting with AIRS. Bull. Amer. Meteor. Soc., 87, 891894, https://doi.org/10.1175/BAMS-87-7-891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., J. Jung, T. Zapotocny, J. Derber, R. Treadon, S. Lord, M. Goldberg, and W. Wolf, 2006b: The application of AIRS radiances in numerical weather prediction. Aust. Meteor. Mag., 55, 213217.

    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., J. Jung, M. Goldberg, C. Barnet, W. Wolf, J. Derber, R. Treadon, and S. Lord, 2008: Using cloudy AIRS fields of view in numerical weather prediction. Aust. Meteor. Mag., 57, 249254.

    • Search Google Scholar
    • Export Citation
  • Lerner, J. A., E. Weisz, and G. Kirchengast, 2002: Temperature and humidity retrieval from simulated Infrared Atmospheric Sounding Interferometer (IASI) measurements. J. Geophys. Res., 107, 4189, https://doi.org/10.1029/2001JD900254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and H.-L. Huang, 1994: Optimal use of high resolution infrared sounder channels in atmospheric profile retrieval. Adv. Atmos. Sci., 11, 271276, https://doi.org/10.1007/BF02658145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and H.-L. Huang, 1999: Retrieval of atmospheric profiles from satellite sounder measurements by use of the discrepancy principle. Appl. Opt., 38, 916923, https://doi.org/10.1364/AO.38.000916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and S. Huang, 2001: Application of improved discrepancy principle in inversion of atmosphere infrared remote sensing. Sci. China, 44D, 847857, https://doi.org/10.1007/BF02907097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and H. Liu, 2009: Improved hurricane track and intensity forecast using single field-of-view advanced IR sounding measurements. Geophys. Res. Lett., 36, L11813, https://doi.org/10.1029/2009GL038285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., F. Zhou, and Q. Zeng, 1994: Simultaneous non-linear retrieval of atmospheric temperature and absorbing constituent profiles from satellite infrared sounder radiances. Adv. Atmos. Sci., 11, 128138, https://doi.org/10.1007/BF02666541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., W. W. Wolf, W. P. Menzel, W. Zhang, H.-L. Huang, and T. H. Achtor, 2000: Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteor., 39, 12481268, https://doi.org/10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., W. P. Menzel, and A. J. Schreiner, 2001: Variational retrieval of cloud parameters from GOES sounder longwave cloudy radiance measurements. J. Appl. Meteor., 40, 312330, https://doi.org/10.1175/1520-0450(2001)040<0312:VROCPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., W. P. Menzel, W. Zhang, F. Sun, T. J. Schmit, J. J. Gurka, and E. Weisz, 2004: Synergistic use of MODIS and AIRS in a variational retrieval of cloud parameters. J. Appl. Meteor., 43, 16191634, https://doi.org/10.1175/JAM2166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., C. Y. Liu, H.-L. Huang, T. J. Schmit, W. P. Menzel, and J. Gurka, 2005a: Optimal cloud-clearing for AIRS radiances using MODIS. IEEE Trans. Geosci. Remote Sens., 43, 12661278, https://doi.org/10.1109/TGRS.2005.847795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and Coauthors, 2005b: Retrieval of cloud microphysical properties from MODIS and AIRS. J. Appl. Meteor., 44, 15261543, https://doi.org/10.1175/JAM2281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., J. Otkin, T. J. Schmit, and C.-Y. Liu, 2011: Warning information in a preconvection environment from the geostationary advanced infrared sounding system—A simulation study using the IHOP case. J. Appl. Meteor. Climatol., 50, 776783, https://doi.org/10.1175/2010JAMC2441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., C. -Y. Liu, P. Zhang, and T. J. Schmit, 2012: Applications of full spatial resolution space-based advanced infrared soundings in the preconvection environment. Wea. Forecasting, 27, 515524, https://doi.org/10.1175/WAF-D-10-05057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., P. Wang, H. Han, J. Li, and J. Zheng, 2016: On the assimilation of satellite sounder data in cloudy skies in numerical weather prediction models. J. Meteor. Res., 30, 169182, https://doi.org/10.1007/s13351-016-5114-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C.-Y., S.-C. Kuo, A. H. N. Lim, S.-C. Hsu, K.-H. Tseng, N.-C. Yeh, and Y.-C. Yang, 2016: Optimal use of space-borne advanced infrared and microwave soundings for regional numerical weather prediction. Remote Sens., 8, 816, https://doi.org/10.3390/rs8100816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., and J. Li, 2010: An improvement in forecasting rapid intensification of Typhoon Sinlaku (2008) using clear-sky full spatial resolution advanced IR soundings. J. Appl. Meteor. Climatol., 49, 821827, https://doi.org/10.1175/2009JAMC2374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., D. K. Zhou, A. M. Larar, W. L. Smith, P. Schluessel, S. M. Newman, J. P. Taylor, and W. Wu, 2009: Retrieval of atmospheric profiles and cloud properties from IASI spectra using super-channels. Atmos. Chem. Phys., 9, 91219142, https://doi.org/10.5194/acp-9-9121-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., J. Guo, L. Ya