CloudSat and CALIPSO within the A-Train: Ten Years of Actively Observing the Earth System

Graeme Stephens Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, and Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Graeme Stephens in
Current site
Google Scholar
PubMed
Close
,
David Winker NASA Langley Research Center, Hampton, Virginia

Search for other papers by David Winker in
Current site
Google Scholar
PubMed
Close
,
Jacques Pelon Laboratoire Atmosphères, Milieux, Observations Spatiales, UPMC-UVSQ-CNRS, Paris, France

Search for other papers by Jacques Pelon in
Current site
Google Scholar
PubMed
Close
,
Charles Trepte NASA Langley Research Center, Hampton, Virginia

Search for other papers by Charles Trepte in
Current site
Google Scholar
PubMed
Close
,
Deborah Vane Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Deborah Vane in
Current site
Google Scholar
PubMed
Close
,
Cheryl Yuhas NASA Headquarters, Washington, D.C

Search for other papers by Cheryl Yuhas in
Current site
Google Scholar
PubMed
Close
,
Tristan L’Ecuyer Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Tristan L’Ecuyer in
Current site
Google Scholar
PubMed
Close
, and
Matthew Lebsock Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Matthew Lebsock in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

One of the most successful demonstrations of an integrated approach to observe Earth from multiple perspectives is the A-Train satellite constellation. The science enabled by this constellation flourished with the introduction of the two active sensors carried by the National Aeronautics and Space Administration (NASA) CloudSat and the NASA–Centre National d’Études Spatiales (CNES) Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellites that were launched together on 28 April 2006. These two missions have provided a 10-yr demonstration of coordinated formation flying that made it possible to develop integrated products and that offered new insights into key atmospheric processes. The progress achieved over this decade of observations, summarized in this paper, clearly demonstrate the fundamental importance of the vertical structure of clouds and aerosol for understanding the influences of the larger-scale atmospheric circulation on aerosol, the hydrological cycle, the cloud-scale physics, and the formation of the major storm systems of Earth. The research also underscored inherent ambiguities in radiance data in describing cloud properties and how these active systems have greatly enhanced passive observation. It is now clear that monitoring the vertical structure of clouds and aerosol is essential, and a climate data record is now being constructed. These pioneering efforts are to be continued with the Earth Clouds, Aerosol and Radiation Explorer (EarthCARE) mission planned for launch in 2019.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Graeme Stephens, graeme.stephens@jpl.nasa.gov

Abstract

One of the most successful demonstrations of an integrated approach to observe Earth from multiple perspectives is the A-Train satellite constellation. The science enabled by this constellation flourished with the introduction of the two active sensors carried by the National Aeronautics and Space Administration (NASA) CloudSat and the NASA–Centre National d’Études Spatiales (CNES) Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellites that were launched together on 28 April 2006. These two missions have provided a 10-yr demonstration of coordinated formation flying that made it possible to develop integrated products and that offered new insights into key atmospheric processes. The progress achieved over this decade of observations, summarized in this paper, clearly demonstrate the fundamental importance of the vertical structure of clouds and aerosol for understanding the influences of the larger-scale atmospheric circulation on aerosol, the hydrological cycle, the cloud-scale physics, and the formation of the major storm systems of Earth. The research also underscored inherent ambiguities in radiance data in describing cloud properties and how these active systems have greatly enhanced passive observation. It is now clear that monitoring the vertical structure of clouds and aerosol is essential, and a climate data record is now being constructed. These pioneering efforts are to be continued with the Earth Clouds, Aerosol and Radiation Explorer (EarthCARE) mission planned for launch in 2019.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Graeme Stephens, graeme.stephens@jpl.nasa.gov
Save
  • Asrar, G., and J. Dozier, 1994: EOS: Science Strategy for the Earth Observing System. American Institute of Physics Press, 119 pp.

  • Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, https://doi.org/10.1175/JCLI-D-13-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., P. G. Hill, K. Furtado, K. D. Williams, P. R. Field, J. C. Manners, P. Hyder, and S. Kato, 2016: Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean. J. Climate, 29, 42134228, https://doi.org/10.1175/JCLI-D-15-0564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2015: Cloud, circulation and climate sensitivity. Nat. Geosci., 8, 261268, https://doi.org/10.1038/ngeo2398.

  • Chepfer, H., V. Noel, D. Winker, and M. Chiriaco, 2014: Where and when will we observe cloud changes due to climate warming? Geophys. Res. Lett., 41, 83878395, https://doi.org/10.1002/2014GL061792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eguchi, K., I. Uno, K. Yumimoto, T. Takemura, A. Shimizu, N. Sugimoto, and Z. Liu, 2009: Trans-Pacific dust transport: Integrated analysis of NASA/CALIPSO and a global aerosol transport model. Atmos. Chem. Phys., 9, 31373145, https://doi.org/10.5194/acp-9-3137-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, R. M., and M. Ahlgrimm, 2014: On the representation of high-latitude boundary layer mixed-phase cloud in the ECMWF global model. Mon. Wea. Rev., 142, 34253445, https://doi.org/10.1175/MWR-D-13-00325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, R. M., A. Geer, K. Lonitz, and M. Ahlgrimm, 2016: Reducing systematic errors in cold-air outbreaks. ECMWF Newsletter, No. 146, ECMWF, Reading, United Kingdom, 17–22, https://doi.org/10.21957/s41h7q7l.

    • Crossref
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, https://doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, https://doi.org/10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. H. Vonder Haar, T. L’Ecuyer, and D. Henderson, 2013: Radiative heating characteristics of Earth’s cloudy atmosphere from vertically resolved active sensors. Geophys. Res. Lett., 40, 624630, https://doi.org/10.1002/grl.50145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A., Y. Li, B. A. Braum, R. E. Holz, S. Platnick, and P. Yang, 2015: Retrieval of cirrus cloud optical depth under day and night conditions from MODIS Collection 6 cloud property data. Remote Sens., 7, 72577271, https://doi.org/10.3390/rs70607257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthors, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309, https://doi.org/10.1175/2009JTECHA1280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2015: The EarthCare satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, https://doi.org/10.1175/BAMS-D-12-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. J., and Coauthors, 2014: The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 14, 399426, https://doi.org/10.5194/acp-14-399-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 46174636, https://doi.org/10.1175/JCLI-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kox, S., L. Bugliaro, and A. Ostler, 2014: Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing. Atmos. Meas. Tech., 7, 32333246, https://doi.org/10.5194/amt-7-3233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., L. Milani, N. B. Wood, S. A. Tushaus, R. Bennartz, and T. S. L’Ecuyer, 2016: A shallow cumuliform snowfall census using spaceborne radar. J. Hydrometeor., 17, 12611279, https://doi.org/10.1175/JHM-D-15-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T., and Coauthors, 2015: The observed state of the energy budget in the early twenty-first century. J. Climate, 28, 83198346, https://doi.org/10.1175/JCLI-D-14-00556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.-X., and H. Le Treut, 1992: Cloud-radiation feedback in a general circulation model and their dependence on cloud modeling assumptions. Climate Dyn., 7, 133139, https://doi.org/10.1007/BF00211155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., and E.-K. Seo, 2013: Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approach. J. Geophys. Res. Atmos., 118, 13761387, https://doi.org/10.1002/jgrd.50172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2008: CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport. J. Geophys. Res., 113, D07207, https://doi.org/10.1029/2007JD008878.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and F. Wrenn, 2013: Evaluation of the hydrometeor layers in the east and west Pacific within ISCCP cloud-top pressure–optical depth bins using merged CloudSat and CALIPSO data. J. Climate, 26, 94299444, https://doi.org/10.1175/JCLI-D-12-00207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, https://doi.org/10.1002/2013JD021374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., C. A. Senior, and W. J. Ingram, 1989: CO2 and climate: A missing feedback? Nature, 341, 132134, https://doi.org/10.1038/341132a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 2015: Continuity of NASA Earth Observations from Space: A Value Framework. National Academies Press, 118 pp., https://doi.org/10.17226/21789.

    • Crossref
    • Export Citation
  • O’Dell, C. W., F. J. Wentz, and R. Bennartz, 2008: Cloud liquid water path from satellite-based passive microwave observations: A new climatology over the global oceans. J. Climate, 21, 17211739, https://doi.org/10.1175/2007jcli1958.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palerme, C., C. Genton, C. Chaud, J. E. Kay, N. B. Wood, and T. L’Ecuyer, 2017: Evaluation of current and projected Antarctic precipitation in CMIP5 models. Climate Dyn., 48, 225239, https://doi.org/10.1007/s00382-016-3071-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612288, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., and Coauthors, 2016: Observation and integrated Earth-system science: A roadmap for 2016–2025. Adv. Space Res., 57, 20372103, https://doi.org/10.1016/j.asr.2016.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smalley, M., T. L’Ecuyer, M. Lebsock, and J. Haynes, 2014: A comparison of precipitation occurrence from the NCEP Stage IV QPE product and the CloudSat Cloud Profiling Radar. J. Hydrometeor., 15, 444458, https://doi.org/10.1175/JHM-D-13-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, https://doi.org/10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, https://doi.org/10.1038/ngeo1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., S. Cros, N. Lamquin, R. Armante, A. Chédin, C. Crevoisier, and N. A. Scott, 2008: Cloud properties from Atmospheric Infrared Sounder and evaluation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. J. Geophys. Res., 113, D00A10, https://doi.org/10.1029/2008JD009928.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., T. Y. Nakajima, and G. L. Stephens, 2010: Particle growth and drop collection efficiency of warm clouds as inferred from joint CloudSat and MODIS observations. J. Atmos. Sci., 67, 30193032, https://doi.org/10.1175/2010JAS3463.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, H., K. Suzuki, and G. L. Stephens, 2017: Land–ocean differences in the warm rain formation process in satellite observations, ground-based observations, and model simulations. Quart. J. Roy. Meteor. Soc., 143, 18041815, https://doi.org/10.1002/qj.3042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, I., T. Storelvmo, and M. D. Zelinka, 2016: Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science, 352, 224227, https://doi.org/10.1126/science.aad5300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440454, https://doi.org/10.1175/2009JCLI3152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO Mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, https://doi.org/10.1175/2010BAMS3009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers, 2013: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys., 13, 33453361, https://doi.org/10.5194/acp-13-3345-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yumimoto, K., K. Eguchi, I. Uno, T. Takemura, Z. Liu, A. Shimizu, and N. Sugimoto, 2009: Elevated large-scale dust veil originated in the Taklimakan Desert: Intercontinental transport and 3-dimensional structure captured by CALIPSO and regional and global models. Atmos. Chem. Phys., 9, 85458558, https://doi.org/10.5194/acp-9-8545-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3206 815 37
PDF Downloads 2295 496 30