Scientific Challenges of Convective-Scale Numerical Weather Prediction

Jun-Ichi Yano CNRM, CNRS and Météo-France, Toulouse, France

Search for other papers by Jun-Ichi Yano in
Current site
Google Scholar
PubMed
Close
,
Michał Z. Ziemiański Institute of Meteorology and Water Management, National Research Institute, Warsaw, Poland

Search for other papers by Michał Z. Ziemiański in
Current site
Google Scholar
PubMed
Close
,
Mike Cullen Met Office, Exeter, United Kingdom

Search for other papers by Mike Cullen in
Current site
Google Scholar
PubMed
Close
,
Piet Termonia Royal Meteorological Institute of Belgium, Brussels, Belgium

Search for other papers by Piet Termonia in
Current site
Google Scholar
PubMed
Close
,
Jeanette Onvlee KNMI, De Bilt, Netherlands

Search for other papers by Jeanette Onvlee in
Current site
Google Scholar
PubMed
Close
,
Lisa Bengtsson NOAA/CIRES, Boulder, Colorado

Search for other papers by Lisa Bengtsson in
Current site
Google Scholar
PubMed
Close
,
Alberto Carrassi NERSC, Bergen, Norway

Search for other papers by Alberto Carrassi in
Current site
Google Scholar
PubMed
Close
,
Richard Davy NERSC, Bergen, Norway

Search for other papers by Richard Davy in
Current site
Google Scholar
PubMed
Close
,
Anna Deluca Institut Catal de Cincies del Clima, Barcelona, Spain

Search for other papers by Anna Deluca in
Current site
Google Scholar
PubMed
Close
,
Suzanne L. Gray University of Reading, Reading, United Kingdom

Search for other papers by Suzanne L. Gray in
Current site
Google Scholar
PubMed
Close
,
Víctor Homar Universidad de les Islas Baleares, Palma, Spain

Search for other papers by Víctor Homar in
Current site
Google Scholar
PubMed
Close
,
Martin Köhler DWD, Offenbach, Germany

Search for other papers by Martin Köhler in
Current site
Google Scholar
PubMed
Close
,
Simon Krichak Tel Aviv University, Tel Aviv, Israel

Search for other papers by Simon Krichak in
Current site
Google Scholar
PubMed
Close
,
Silas Michaelides Cyprus Institute, Nicosia, and Cyprus University of Technology, Limassol, Cyprus

Search for other papers by Silas Michaelides in
Current site
Google Scholar
PubMed
Close
,
Vaughan T. J. Phillips University of Lund, Lund, Sweden

Search for other papers by Vaughan T. J. Phillips in
Current site
Google Scholar
PubMed
Close
,
Pedro M. M. Soares Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal

Search for other papers by Pedro M. M. Soares in
Current site
Google Scholar
PubMed
Close
, and
Andrzej A. Wyszogrodzki Institute of Meteorology and Water Management, National Research Institute, Warsaw, Poland

Search for other papers by Andrzej A. Wyszogrodzki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

After extensive efforts over the course of a decade, convective-scale weather forecasts with horizontal grid spacings of 1–5 km are now operational at national weather services around the world, accompanied by ensemble prediction systems (EPSs). However, though already operational, the capacity of forecasts for this scale is still to be fully exploited by overcoming the fundamental difficulty in prediction: the fully three-dimensional and turbulent nature of the atmosphere. The prediction of this scale is totally different from that of the synoptic scale (103 km), with slowly evolving semigeostrophic dynamics and relatively long predictability on the order of a few days.

Even theoretically, very little is understood about the convective scale compared to our extensive knowledge of the synoptic-scale weather regime as a partial differential equation system, as well as in terms of the fluid mechanics, predictability, uncertainties, and stochasticity. Furthermore, there is a requirement for a drastic modification of data assimilation methodologies, physics (e.g., microphysics), and parameterizations, as well as the numerics for use at the convective scale. We need to focus on more fundamental theoretical issues—the Liouville principle and Bayesian probability for probabilistic forecasts—and more fundamental turbulence research to provide robust numerics for the full variety of turbulent flows.

The present essay reviews those basic theoretical challenges as comprehensibly as possible. The breadth of the problems that we face is a challenge in itself: an attempt to reduce these into a single critical agenda should be avoided.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Jun-Ichi Yano, jun-ichi.yano@meteo.fr

Abstract

After extensive efforts over the course of a decade, convective-scale weather forecasts with horizontal grid spacings of 1–5 km are now operational at national weather services around the world, accompanied by ensemble prediction systems (EPSs). However, though already operational, the capacity of forecasts for this scale is still to be fully exploited by overcoming the fundamental difficulty in prediction: the fully three-dimensional and turbulent nature of the atmosphere. The prediction of this scale is totally different from that of the synoptic scale (103 km), with slowly evolving semigeostrophic dynamics and relatively long predictability on the order of a few days.

Even theoretically, very little is understood about the convective scale compared to our extensive knowledge of the synoptic-scale weather regime as a partial differential equation system, as well as in terms of the fluid mechanics, predictability, uncertainties, and stochasticity. Furthermore, there is a requirement for a drastic modification of data assimilation methodologies, physics (e.g., microphysics), and parameterizations, as well as the numerics for use at the convective scale. We need to focus on more fundamental theoretical issues—the Liouville principle and Bayesian probability for probabilistic forecasts—and more fundamental turbulence research to provide robust numerics for the full variety of turbulent flows.

The present essay reviews those basic theoretical challenges as comprehensibly as possible. The breadth of the problems that we face is a challenge in itself: an attempt to reduce these into a single critical agenda should be avoided.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Jun-Ichi Yano, jun-ichi.yano@meteo.fr
Save
  • Anderson, J. L., 2010: A non-Gaussian ensemble filter update for data assimilation. Mon. Wea. Rev., 138, 41864198, https://doi.org/10.1175/2010MWR3253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, https://doi.org/10.1038/nature14956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, J. O., 1985: Statistical Decision Theory and Bayesian Analysis. 2nd ed. Springer, 617 pp.

  • Berner, J., and Coauthors, 2017: Stochastic parameterization: Towards a new view of weather and climate models. Bull. Amer. Meteor. Soc., 98, 565588, https://doi.org/10.1175/BAMS-D-15-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bocquet, M., C. A. Pires, and L. Wu, 2010: Beyond Gaussian statistical modeling in geophysical data assimilation. Mon. Wea. Rev., 138, 29973023, https://doi.org/10.1175/2010MWR3164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrassi, A., M. Ghil, A. Trevisan, and F. Uboldi, 2008: Data assimilation as a nonlinear dynamical systems problem: Stability and convergence of the prediction-assimilation system. Chaos, 18, 023112, https://doi.org/10.1063/1.2909862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ching, J., R. Rotunno, M. LeMone, A. Martilli, B. Kosovic, P. A. Jimenez, and J. Dudhia, 2014: Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models. Mon. Wea. Rev., 142, 32843302, https://doi.org/10.1175/MWR-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chustagulprom, N., S. Reich, and M. Reinhardt, 2016: A hybrid ensemble transform particle filter for nonlinear and spatially extended dynamical systems. SIAM/ASA J. Uncertainty Quantif., 4, 592608, https://doi.org/10.1137/15M1040967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crisan, D., and B. Rozovskii, 2011: The Oxford Handbook of Nonlinear Filtering. Oxford University Press, 1080 pp.

  • de Meutter, P., L. Gerard, G. Smet, K. Hamid, R. Hamdi, D. Degrauwe, and P. Termonia, 2015: Predicting small-scale, short-lived downbursts: Case study with the NWP limited-area ALARO model for the Pukkelpop thunderstorm. Mon. Wea. Rev., 143, 742756, https://doi.org/10.1175/MWR-D-14-00290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, https://doi.org/10.1002/qj.1959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doucet, A., S. Godskill, and C. Anrieu, 2000: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput., 10, 197208, https://doi.org/10.1023/A:1008935410038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubal, M., N. Wood, and A. Staniforth, 2006: Some numerical properties of approaches to physics–dynamics coupling for NWP. Quart. J. Roy. Meteor. Soc., 132, 2742, https://doi.org/10.1256/qj.05.49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2009: Data Assimilation: The Ensemble Kalman Filter. 2nd ed. Springer, 306 pp.

  • Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955965, https://doi.org/10.1175/BAMS-85-7-955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, U., 1995: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 296 pp.

  • Gerard, L., J.-M. Piriou, R. Brožková, J.-F. Geleyn, and D. Banciu, 2009: Cloud and precipitation parameterization in a meso-gamma-scale operational weather prediction model. Mon. Wea. Rev., 137, 39603977, https://doi.org/10.1175/2009MWR2750.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoheneger, C., and C. Schär, 2007: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteor. Soc., 88, 17831793, https://doi.org/10.1175/BAMS-88-11-1783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huuskonen, A., E. Saltikoff, and I. Holleman, 2014: The operational weather radar network in Europe. Bull. Amer. Meteor. Soc., 95, 897907, https://doi.org/10.1175/BAMS-D-12-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaynes, E. T., 2003: Probability Theory: The Logic of Science. Cambridge University Press, 727 pp.

  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.

  • Kain, J. S., S. R. Dembek, S. J. Weiss, J. L. Case, J. J. Levit, and R. A. Sobash, 2010: Extracting unique information from high resolution forecast models: Monitoring selected fields and phenomena every time step. Wea. Forecasting, 25, 15361542, https://doi.org/10.1175/2010WAF2222430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 368 pp.

    • Crossref
    • Export Citation
  • Lauritzen, P. H., P. A. Ullrich, and R. D. Nair, 2011: Atmospheric transport schemes: Desirable properties and a semi-Lagrangian view on finite-volume discretizations. Numerical Techniques for Global Atmospheric Models, P. H. Lauritzen et al., Eds., Lecture Notes in Computational Science and Engineering, Vol. 80, Springer, 185–250.

    • Crossref
    • Export Citation
  • Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409418, https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1980: Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci., 37, 958968, https://doi.org/10.1175/1520-0469(1980)037<0958:NNMIAQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242, https://doi.org/10.1017/S0022112005008128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and T. Payne, 2007: 4D-Var and the butterfly effect: Statistical four-dimensional data assimilation for a wide range of scales. Quart. J. Roy. Meteor. Soc., 133, 607614, https://doi.org/10.1002/qj.36.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., 2006: The uncoordinated giant. Bull. Amer. Meteor. Soc., 87, 573584, https://doi.org/10.1175/BAMS-87-5-573.

  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430, https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and J. S. A. Green, 1972: The propagation and transfer properties of steady convective overturning in shear. Quart. J. Roy. Meteor. Soc., 98, 336352, https://doi.org/10.1002/qj.49709841607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., A. Döring, and G. Seregin, 2014: The real butterfly effect. Nonlinearity, 27, R123R141, https://doi.org/10.1088/0951-7715/27/9/R123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavliotis, G. A., and A. M. Stuart, 2007: Multiscale Methods: Averaging and Homogenization. Springer, 307 pp.

  • Petcu, M. R., M Temam, and M. Ziane, 2009: Some mathematical problems in geophysical fluid dynamics. Special Volume: Computational Methods for the Atmosphere and the Oceans, R. M. Temam and J. J. Tribbia, Eds., Vol. 14, Handbook of Numerical Analysis, Elsevier, 577–750, https://doi.org/10.1016/S1570-8659(08)00212-3.

    • Crossref
    • Export Citation
  • Phillips, V. T. J., A. Pokrovsky, and A. Khain, 2007: The influence of time-dependent melting on the dynamics and precipitation production in maritime and continental storm-clouds. J. Atmos. Sci., 64, 338359, https://doi.org/10.1175/JAS3832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., A. Khain, N. Benmoshe, and E. Ilotovich, 2014: Theory of time-dependent freezing and its application in a cloud model with spectral bin microphysics. I: Wet growth of hail. J. Atmos. Sci., 71, 45274557, https://doi.org/10.1175/JAS-D-13-0375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piotrowski, Z. P., P. K. Smolarkiewicz, S. P. Malinowski, and A. A. Wyszogrodzki, 2009: On numerical realizability of thermal convection. J. Comput. Phys., 228, 62686290, https://doi.org/10.1016/j.jcp.2009.05.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, R. S., and G. C. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87105, https://doi.org/10.1175/2007JAS2263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., R. A. Sobash, and J. L. Anderson, 2017: Convective-scale data assimilation for the weather research and forecasting model using the local particle filter. Mon. Wea. Rev., 145, 18971918, https://doi.org/10.1175/MWR-D-16-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 712 pp.

  • Quinn, J. C., and H. D. Abarbanel, 2010: State and parameter estimation using Monte Carlo evaluation of path integrals. Quart. J. Roy. Meteor. Soc., 136, 18551867, https://doi.org/10.1002/qj.690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, https://doi.org/10.1175/2009WAF2222267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slivinski, L., and C. Snyder, 2016: Exploring practical estimates of the ensemble size necessary for particle filters. Mon. Wea. Rev., 144, 861875, https://doi.org/10.1175/MWR-D-14-00303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P., 2006: Multidimensional positive definite advection transport algorithm: An overview. Int. J. Numer. Methods Fluids, 50, 11231144, https://doi.org/10.1002/fld.1071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, https://doi.org/10.1175//2555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staniforth, A., and J. Côté, 1991: Semi-Lagrangian integration schemes for atmospheric models—A review. Mon. Wea. Rev., 119, 22062223, https://doi.org/10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, T. H. M., and Coauthors, 2015: The DYMECS Project: A statistical approach for the evaluation of convective storms in high-resolution NWP models. Bull. Amer. Meteor. Soc., 96, 939951, https://doi.org/10.1175/BAMS-D-13-00279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2014: Use of NWP for nowcasting convective precipitation. Bull. Amer. Meteor. Soc., 95, 409426, https://doi.org/10.1175/BAMS-D-11-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., and F. Zhang, 2016: Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci., 73, 14191438, https://doi.org/10.1175/JAS-D-15-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113, 13111328, https://doi.org/10.1002/qj.49711347812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Temam, R., and J. Tribbia, 2014: Uniqueness of solutions for moist advection problems. Quart. J. Roy. Meteor. Soc., 140, 13151318, https://doi.org/10.1002/qj.2217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennekes, H., 1978: Turbulent flow in two and three dimensions. Bull. Amer. Meteor. Soc., 59, 2228, https://doi.org/10.1175/1520-0477(1978)059<0022:TFITAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Termonia, P., and R. Hamdi, 2007: Stability and accuracy of the physics—Dynamics coupling in spectral models. Quart. J. Roy. Meteor. Soc., 133, 15891604, https://doi.org/10.1002/qj.119.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Two-dimensional convection in non-constant shear: A model of mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739762, https://doi.org/10.1002/qj.49710845802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uboldi, F., and A. Trevisan, 2015: Multiple-scale error growth in a convection-resolving model. Nonlinear Processes Geophys., 22, 113, https://doi.org/10.5194/npg-22-1-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Lier-Walqui, M., T. Vukicevic, and D. J. Posselt, 2014: Linearization of micropysical parameterization uncertainty using multiplicative process perturbation parameters. Mon. Wea. Rev., 142, 401413, https://doi.org/10.1175/MWR-D-13-00076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., 2014: Formulation structure of the mass–flux convection parameterization. Dyn. Atmos. Oceans, 67, 128, https://doi.org/10.1016/j.dynatmoce.2014.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., 2016: Subgrid-scale physical parameterization in atmospheric modelling: How can we make it consistent? J. Phys. A: Math. Theor., 49, 284001, https://doi.org/10.1088/1751-8113/49/28/284001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and R. S. Plant, 2012: Interactions between shallow and deep convection under a finite departure from convective quasi–equilibrium. J. Atmos. Sci., 69, 34633470, https://doi.org/10.1175/JAS-D-12-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and V. T. J. Phillips, 2016: Explosive ice multiplication induced by multiplicative-noise fluctuation of mechanical breakup in ice–ice collisions. J. Atmos. Sci., 73, 46854697, https://doi.org/10.1175/JAS-D-16-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and E. Ouchtar, 2017: Convective initiation uncertainties without trigger or stochasticity: Probabilistic description by the Liouville equation and Bayes’ theorem. Quart. J. Roy. Meteor. Soc., 143, 20252035, https://doi.org/10.1002/qj.3064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., C. Liu, and M. W. Moncrieff, 2012: Self-organized criticality and homeostasis in atmospheric convective organization. J. Atmos. Sci., 69, 34493462, https://doi.org/10.1175/JAS-D-12-069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., L. Bengtsson, J.-F. Geleyn, and R. Brozkova, 2015: Towards a unified and self-consistent parameterization framework. Parameterization of Atmospheric Convection, Vol. 2, R. S. Plant and J.-I. Yano, Eds., World Scientific, 423435, https://doi.org/10.1142/9781783266913_0030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, I. Rogachevskii, and I. Esau, 2013: A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably-stratified geophysical flows. Bound.-Layer Meteor., 146, 341373, https://doi.org/10.1007/s10546-012-9768-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2459 836 48
PDF Downloads 1815 558 61