Monitoring the Micrometeorology of a Coastal Site next to a Thermal Power Plant from the Surface to 140 m

Otávio C. Acevedo Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil

Search for other papers by Otávio C. Acevedo in
Current site
Google Scholar
PubMed
Close
,
Gervásio A. Degrazia Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil

Search for other papers by Gervásio A. Degrazia in
Current site
Google Scholar
PubMed
Close
,
Franciano S. Puhales Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil

Search for other papers by Franciano S. Puhales in
Current site
Google Scholar
PubMed
Close
,
Luis G. N. Martins Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil

Search for other papers by Luis G. N. Martins in
Current site
Google Scholar
PubMed
Close
,
Pablo E. S. Oliveira Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil

Search for other papers by Pablo E. S. Oliveira in
Current site
Google Scholar
PubMed
Close
,
Claudio Teichrieb Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil

Search for other papers by Claudio Teichrieb in
Current site
Google Scholar
PubMed
Close
,
Samuel M. Silva Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil

Search for other papers by Samuel M. Silva in
Current site
Google Scholar
PubMed
Close
,
Rafael Maroneze Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil

Search for other papers by Rafael Maroneze in
Current site
Google Scholar
PubMed
Close
,
Bardo Bodmann Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil

Search for other papers by Bardo Bodmann in
Current site
Google Scholar
PubMed
Close
,
Luca Mortarini National Research Council, Institute of Atmospheric Sciences and Climate, Bologna, Italy

Search for other papers by Luca Mortarini in
Current site
Google Scholar
PubMed
Close
,
Daniela Cava National Research Council, Institute of Atmospheric Sciences and Climate, Bologna, Italy

Search for other papers by Daniela Cava in
Current site
Google Scholar
PubMed
Close
, and
Domenico Anfossi National Research Council, Institute of Atmospheric Sciences and Climate, Bologna, Italy

Search for other papers by Domenico Anfossi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A 140-m micrometeorological tower has been operating since August 2016 at 4 km from the coastline and 250 m from a thermal power plant that releases heat from its 20-m stacks in southeastern Brazil. The measurements include 11 levels of turbulence observations and 10 levels of slow-response temperature and humidity. The observed atmospheric structure is largely dependent on the wind direction with respect to the power plant. When winds blow from the plant to the tower, the air layer between 20 and 60 m of the atmosphere may be warmed by as much as 2°C. In these circumstances there are events when the emissions pass directly by the tower. They allow the analysis of turbulence structures of thermal plumes generated from the plant’s heat release in comparison with those generated by the surface heating. In the more common case of winds blowing from the tower to the plant, the observations allow a detailed description of the local atmospheric boundary layer. During the day, vertical profiles of turbulent quantities and their spectral distributions show a cycle controlled by interactions between the land and oceanic surfaces, such as a thermal internal boundary layer. At night, there is a systematic tendency of progressive stabilization throughout the period, suitable for the analysis of the boundary layer transition from weakly to very stable conditions. The data also grant the inference of detailed vertical profiles of turbulent diffusion coefficients directly from observations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Otávio C Acevedo,otavio@ufsm.edu

Abstract

A 140-m micrometeorological tower has been operating since August 2016 at 4 km from the coastline and 250 m from a thermal power plant that releases heat from its 20-m stacks in southeastern Brazil. The measurements include 11 levels of turbulence observations and 10 levels of slow-response temperature and humidity. The observed atmospheric structure is largely dependent on the wind direction with respect to the power plant. When winds blow from the plant to the tower, the air layer between 20 and 60 m of the atmosphere may be warmed by as much as 2°C. In these circumstances there are events when the emissions pass directly by the tower. They allow the analysis of turbulence structures of thermal plumes generated from the plant’s heat release in comparison with those generated by the surface heating. In the more common case of winds blowing from the tower to the plant, the observations allow a detailed description of the local atmospheric boundary layer. During the day, vertical profiles of turbulent quantities and their spectral distributions show a cycle controlled by interactions between the land and oceanic surfaces, such as a thermal internal boundary layer. At night, there is a systematic tendency of progressive stabilization throughout the period, suitable for the analysis of the boundary layer transition from weakly to very stable conditions. The data also grant the inference of detailed vertical profiles of turbulent diffusion coefficients directly from observations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Otávio C Acevedo,otavio@ufsm.edu
Save
  • Acevedo, O. C., and D. R. Fitzjarrald, 2001: The early evening surface-layer transition: Temporal and spatial variability. J. Atmos. Sci., 58, 26502667, https://doi.org/10.1175/1520-0469(2001)058<2650:TEESLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Acevedo, O. C., F. D. Costa, P. E. S. Oliveira, F. S. Puhales, G. A. Degrazia, and D. R. Roberti, 2014: The influence of submeso processes on stable boundary layer similarity relationships. J. Atmos. Sci., 71, 207225, https://doi.org/10.1175/JAS-D-13-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Acevedo, O. C., L. Mahrt, F. S. Puhales, F. D. Costa, L. E. Medeiros, and G. A. Degrazia, 2016: Contrasting structures between the decoupled and coupled states of the stable boundary layer. Quart. J. Roy. Meteor. Soc., 142, 693702, https://doi.org/10.1002/qj.2693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrade, K. M., 2015: Climatologia e comportamento dos sistemas frontais sobre a América do Sul. M.S. thesis, Dept. of Meteorology, Instituto Nacional de Pesquisas Espaciais, 185 pp., http://mtc-m16b.sid.inpe.br/col/sid.inpe.br/jeferson/2005/06.15.17.12/doc/publicacao.pdf.

    • Search Google Scholar
    • Export Citation
  • André, J. C., and L. Mahrt, 1982: The nocturnal surface inversion and influence of clear-air radiative cooling. J. Atmos. Sci., 39, 864878, https://doi.org/10.1175/1520-0469(1982)039<0864:TNSIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and Coauthors, 2015: The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gas, and aerosols. Atmos. Chem. Phys., 15, 10 72310 776, https://doi.org/10.5194/acp-15-10723-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., 2008: Transitional, entraining, cloudy and coastal boundary layers. Acta Geophysyca, 56, 220, https://doi.org/10.2478/s11600-007-0035-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beyrich, F., 1997: Mixing height estimation from sodar data—A critical discussion. Atmos. Environ., 31, 39413953, https://doi.org/10.1016/S1352-2310(97)00231-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blay-Carreras, E., E. R. Pardyjak, D. Pino, D. C. Alexander, F. Lohou, and M. Lothon, 2014: Countergradient heat flux observations during the evening transition period. Atmos. Chem. Phys., 14, 90779085, https://doi.org/10.5194/acp-14-9077-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M., C. Jones, and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108, https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., 1984: Observed characteristics of the atmospheric boundary layer. Atmospheric turbulence and air pollution modelling, F. T. M. Nieuwstadt and H. van Dop, Eds., Atmospheric and Oceanographic Sciences Library, Vol. 1, 107–158. Springer, Dordrecht, https://doi.org/10.1007/978-94-010-9112-1_4.

    • Crossref
    • Export Citation
  • Caughey, S. J., and S. G. Palmer, 1979: Some aspects of turbulence structure through the depth of the convective boundary layer. Quart. J. Roy. Meteor. Soc., 105, 811827, https://doi.org/10.1002/qj.49710544606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., J. C. Wyngaard, and J. C. Kaimal, 1979: Turbulence in the evolving stable boundary layer. J. Atmos. Sci., 36, 10411052, https://doi.org/10.1175/1520-0469(1979)036<1041:TITESB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cava, D., L. Mortarini, U. Giostra, R. Richardone, and D. Anfossi, 2017: A wavelet analysis of low-wind-speed submeso motions in a nocturnal boundary layer. Quart. J. Roy. Meteor. Soc., 143, 661669, https://doi.org/10.1002/qj.2954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., and W. M. Angevine, 2000: Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteor., 39, 12331247, https://doi.org/10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coulter, R. L., and M. A. Kallistratova, 2004: Two decades of progress in SODAR techniques: A review of 11 ISARS proceedings. Meteor. Atmos. Phys., 85, 319, https://doi.org/10.1007/s00703-003-0030-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degrazia, G. A., U. Rizza, F. S. Puhales, G. S. Welter, O. C. Acevedo, and S. Maldaner, 2012: Employing Taylor and Heisenberg subfilter viscosities to simulate turbulent statistics in LES models. Physica A, 391, 10201031, https://doi.org/10.1016/j.physa.2011.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., and J. C. Weil, 2010: Whither the stable boundary layer? A shift in the research agenda. Bull. Amer. Meteor. Soc., 91, 14751484, https://doi.org/10.1175/2010BAMS2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., F. Einaudi, and D. Fua, 1984: The interaction between an internal gravity wave and turbulence in the stably-stratified nocturnal boundary layer. J. Atmos. Sci., 41, 24092436, https://doi.org/10.1175/1520-0469(1984)041<2409:TIBAIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1990: The internal boundary layer—A review. Bound.-Layer Meteor., 50, 171203, https://doi.org/10.1007/BF00120524.

  • Heimann, M., and Coauthors, 2014: The Zotino Tall Tower Observatory (ZOTTO): Quantifying large scale biogeochemical changes in Central Siberia. Nova Acta Leopold., 117, 5164.

    • Search Google Scholar
    • Export Citation
  • Howell, J. F., and L. Mahrt, 1997: Multiresolution flux decomposition. Bound.-Layer Meteor., 83, 117137, https://doi.org/10.1023/A:1000210427798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. E. Gaynor, 1983: The Boulder Atmospheric Observatory. J. Climate Appl. Meteor., 22, 863880, https://doi.org/10.1175/1520-0450(1983)022<0863:TBAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. E. Gaynor, 1991: Another look at sonic anemometry. Bound.-Layer Meteor., 56, 401410, https://doi.org/10.1007/BF00119215.

  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 21522169, https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Källstrand, B., and A.-S. Smedman, 1997: A case study of the near-neutral coastal internal boundary-layer growth: Aircraft measurements compared with different model estimates. Bound.-Layer Meteor., 85, 133, https://doi.org/10.1023/A:1000475315106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lothon, M., and Coauthors, 2014: The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys., 14, 10 93110 960, https://doi.org/10.5194/acp-14-10931-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luhar, A. K., B. L. Sawford, J. M. Hacker, and K. N. Rayner, 1998: The Kwiana coastal fumigation study: II—Growth of the thermal internal boundary layer. Bound.-Layer Meteor., 89, 385405, https://doi.org/10.1023/A:1001746303967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2009: Characteristics of submeso winds in the stable boundary layer. Bound.-Layer Meteor., 130, 114, https://doi.org/10.1007/s10546-008-9336-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, https://doi.org/10.1146/annurev-fluid-010313-141354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., J. Sun, W. Blumen, T. Delany, and S. Oncley, 1998: Nocturnal boundary-layer regimes. Bound.-Layer Meteor., 88, 255278, https://doi.org/10.1023/A:1001171313493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malhi, Y. S., 1995: The significance of the dual solutions for heat fluxes measured by the temperature fluctuation method in stable conditions. Bound.-Layer Meteor., 74, 389396, https://doi.org/10.1007/BF00712379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallat, S., 1989: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11, 674693, https://doi.org/10.1109/34.192463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, P. J., 1989: Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci., 46, 14921516, https://doi.org/10.1175/1520-0469(1989)046<1492:LESOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McElroy, J. L., and T. B. Smith, 1991: Lidar descriptions of mixing-layer thickness characteristics in a complex terrain/coastal environment. J. Appl. Meteor., 30, 585597, https://doi.org/10.1175/1520-0450(1991)030<0585:LDOMLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 22022216, https://doi.org/10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., P. J. Mason, C.-H. Moeng, and U. Schumann, 1984: Large-eddy simulation of the convective boundary layer: A comparison of four computer codes. Turbul. Shear Flows, 8, 343367, https://doi.org/10.1007/978-3-642-77674-8_24.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., 1973: Tower micrometeorology. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 151–176.

  • Panofsky, H. A., 1984: Vertical variation of roughness length at the Boulder Atmospheric Observatory. Bound.-Layer Meteor., 28, 305308, https://doi.org/10.1007/BF00121309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodean, H. C., 1996: Stochastic Lagrangian Models of Turbulent Diffusion. Meteor. Monogr., No. 48, Amer. Meteor. Soc., 84 pp.

    • Crossref
    • Export Citation
  • Sandroni, S., P. Bacci, and D. Anfossi, 1981: Aircraft observations of plumes emitted from elevated sources. Atmos. Environ., 15, 95100, https://doi.org/10.1016/0004-6981(81)90130-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Y., H. M. Hacker, and P. Schwerdtfeger, 1991: The structure of turbulence in a coastal atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 117, 12991324, https://doi.org/10.1002/qj.49711750209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sievering, H., 1982: Profile measurements of particle dry deposition velocity at an air-land interface. Atmos. Environ., 16, 301306, https://doi.org/10.1016/0004-6981(82)90446-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Springston, S. R., L. I. Kleinman, F. Brechtel, Y.-N. Lee, L. J. Nunnermacker, and J. Wang, 2005: Chemical evolution of an isolated power plant plume during the TexAQS 2000 study. Atmos. Environ., 39, 34313443, https://doi.org/10.1016/j.atmosenv.2005.01.060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, https://doi.org/10.1175/JAS-D-11-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, C. Nappo, and D. H. Lenschow, 2015: Wind and temperature oscillations generated by wave–turbulence interactions in the stably stratified boundary layer. J. Atmos. Sci., 72, 14841503, https://doi.org/10.1175/JAS-D-14-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., D. H. Lenschow, M. A. LeMone, and L. Mahrt, 2016: The role of large-coherent-eddy transport in the atmospheric surface layer based on CASES-99 observations. Bound.-Layer Meteor., 160, 83111, https://doi.org/10.1007/s10546-016-0134-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennekes, H., 1973: A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci., 30, 558567, https://doi.org/10.1175/1520-0469(1973)030<0558:AMFTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, S. C., W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. C. Law, A. M. Weickmann, and R. M. Hardesty, 2009: Doppler lidar estimation of mixing height using turbulence, shear and aerosol profiles. J. Atmos. Oceanic Technol., 26, 673688, https://doi.org/10.1175/2008JTECHA1157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, H. J. J. Jonker, P. Baas, S. Basu, J. M. M. Donda, J. Sun, and A. A. M. Holtslag, 2012: The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci., 69, 31163127, https://doi.org/10.1175/JAS-D-12-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., and Coauthors, 2017: Regime transitions in near-surface temperature inversions: A conceptual model. J. Atmos. Sci., 74, 10571073, https://doi.org/10.1175/JAS-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Heerwaarden, C. C., B. J. H. van Stratum, T. Heus, J. A. Gibbs, E. Fedorovich, and J. P. Mellado, 2017: MicroHH 1.0: A computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows. Geosci. Model Dev., 10, 31453165, https://doi.org/10.5194/gmd-10-3145-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wingo, S. M., and K. R. Knupp, 2015: Multi-platform observations characterizing the afternoon-to-evening transition of the planetary boundary layer in northern Alabama, USA. Bound.-Layer Meteor., 155, 2953, https://doi.org/10.1007/s10546-014-9988-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 506 169 10
PDF Downloads 553 108 4