Enabling Reanalysis Research Using the Collaborative Reanalysis Technical Environment (CREATE)

Gerald L. Potter NASA Goddard Spaceflight Center/NASA Center for Climate Simulation, Greenbelt, Maryland

Search for other papers by Gerald L. Potter in
Current site
Google Scholar
PubMed
Close
,
Laura Carriere NASA Goddard Spaceflight Center/NASA Center for Climate Simulation, Greenbelt, Maryland

Search for other papers by Laura Carriere in
Current site
Google Scholar
PubMed
Close
,
Judy Hertz NASA Goddard Spaceflight Center/NASA Center for Climate Simulation, Greenbelt, Maryland

Search for other papers by Judy Hertz in
Current site
Google Scholar
PubMed
Close
,
Michael Bosilovich Global Modeling and Assimilation Office, NASA Goddard Spaceflight Center, Greenbelt, Maryland

Search for other papers by Michael Bosilovich in
Current site
Google Scholar
PubMed
Close
,
Daniel Duffy NASA Goddard Spaceflight Center/NASA Center for Climate Simulation, Greenbelt, Maryland

Search for other papers by Daniel Duffy in
Current site
Google Scholar
PubMed
Close
,
Tsengdar Lee NASA Headquarters, Washington, D.C.

Search for other papers by Tsengdar Lee in
Current site
Google Scholar
PubMed
Close
, and
Dean N. Williams Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Dean N. Williams in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes the repackaging and consistent distribution of the world’s major atmospheric and oceanic reanalyses. It also presents examples of the usefulness of examining multiple reanalyses. This service will make it much easier for anybody using reanalysis to access multiple datasets using an approach similar to that of phase 5 of the Coupled Model Intercomparison Project (CMIP5). Experienced users as well as students will find the standardized formatted data convenient to use.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Gerald L. Potter, gerald.potter@nasa.gov

Abstract

This paper describes the repackaging and consistent distribution of the world’s major atmospheric and oceanic reanalyses. It also presents examples of the usefulness of examining multiple reanalyses. This service will make it much easier for anybody using reanalysis to access multiple datasets using an approach similar to that of phase 5 of the Coupled Model Intercomparison Project (CMIP5). Experienced users as well as students will find the standardized formatted data convenient to use.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Gerald L. Potter, gerald.potter@nasa.gov
Save
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., D. Mocko, J. O. Roads, and A. Ruane, 2009: A multimodel analysis for the Coordinated Enhanced Observing Period (CEOP). J. Hydrometeor., 10, 912934, https://doi.org/10.1175/2009JHM1090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cinquini, L., and Coauthors, 2014: The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data. Future Gener. Comput. Syst., 36, 400417, https://doi.org/10.1016/j.future.2013.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Davis, S. M., and Coauthors, 2017: Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP. Atmos. Chem. Phys., 17, 1274312778, https://doi.org/10.5194/acp-17-12743-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R., M. Hoerling, and S. Schubert, Eds., 2008: Reanalysis of historical climate data for key atmospheric features: Implications for attribution of causes of observed change. U.S. Climate Change Science Program and the Subcommittee on Global Change Research Rep., National Oceanic and Atmospheric Administration, National Climatic Data Center, Asheville, NC, 156 pp., www.globalchange.gov/browse/reports/sap-13-reanalysis-historical-climate-data-key-atmospheric-features-implications.

  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregow, H., 2014: Procedure for comparing reanalyses, and comparing reanalyses to assimilated observations and CDRs. Community Research and Development Information Service Deliverable D5.53, 45 pp., www.coreclimax.eu/sites/coreclimax.itc.nl/files/documents/Deliverables/WP_Reports/Deliverable-D553-CORECLIMAX.pdf.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2014: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2015: Evaluation of the GECCO2 ocean synthesis: Transports of volume, heat and freshwater in the Atlantic. Quart. J. Roy. Meteor. Soc., 141, 166181, https://doi.org/10.1002/qj.2347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • New, M., D. Lister, M. Hulme, and I. Makin, 2002: A high-resolution data set of surface climate over global land areas. Climate Res., 21, 125, https://doi.org/10.3354/cr021001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, https://doi.org/10.2151/jmsj.85.369.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, C. A., G. P. Compo, and D. K. Hooper, 2014: Web-based Reanalysis Intercomparison Tools (WRIT) for analysis and comparison of reanalyses and other datasets. Bull. Amer. Meteor. Soc., 95, 16711678, https://doi.org/10.1175/BAMS-D-13-00192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storto, A., S. Masina, and A. Navarra, 2016: Evaluation of the CMCC eddy-permitting global ocean physical reanalysis system (C-GLORS, 1982-2012) and its assimilation components. Quart. J. Roy. Meteor. Soc., 142, 738758, https://doi.org/10.1002/qj.2673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. a. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoda, T., Y. Fujii, T. Yasuda, N. Usui, K. Ogawa, T. Kuragano, H. Tsujino, and M. Kamachi, 2016: Data assimilation of sea ice concentration into a global ocean–sea ice model with corrections for atmospheric forcing and ocean temperature fields. J. Oceanogr., 72, 235262, https://doi.org/10.1007/s10872-015-0326-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, A., and X. Zeng, 2013: Development of global hourly 0.5° land surface air temperature datasets. J. Climate, 26, 76767691, https://doi.org/10.1175/JCLI-D-12-00682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, D., and Coauthors, 2013: Ultrascale visualization of climate data. Computer, 46, 6876, https://doi.org/10.1109/MC.2013.119.

  • Zhang, S., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, https://doi.org/10.1175/MWR3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, H., M. A. Balmaseda, and K. Mogensen, 2015: The new eddy-permitting ORAP5 ocean reanalysis: Description, evaluation and uncertainties in climate signals. Climate Dyn., 49, 791811, https://doi.org/10.1007/s00382-015-2675-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 499 164 12
PDF Downloads 299 76 6