Aboveground Thermodynamic Observations in Convective Storms from Balloonborne Probes Acting as Pseudo-Lagrangian Drifters

Paul M. Markowski Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Paul M. Markowski in
Current site
Google Scholar
PubMed
Close
,
Yvette P. Richardson Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Yvette P. Richardson in
Current site
Google Scholar
PubMed
Close
,
Scott J. Richardson Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Scott J. Richardson in
Current site
Google Scholar
PubMed
Close
, and
Anders Petersson Sparv Embedded AB, Linköping, Sweden

Search for other papers by Anders Petersson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The severe storms research community lacks reliable, aboveground, thermodynamic observations (e.g., temperature, humidity, and pressure) in convective storms. These missing observations are crucial to understanding the behavior of both supercell storms (e.g., the generation, reorientation, and amplification of vorticity necessary for tornado formation) and larger-scale (mesoscale) convective systems (e.g., storm maintenance and the generation of damaging straight-line winds). This paper describes a novel way to use balloonborne probes to obtain aboveground thermodynamic observations. Each probe is carried by a pair of balloons until one of the balloons is jettisoned; the remaining balloon and probe act as a pseudo-Lagrangian drifter that is drawn through the storm. Preliminary data are presented from a pair of deployments in supercell storms in Oklahoma and Kansas during May 2017. The versatility of the observing system extends beyond severe storms applications into any area of mesoscale meteorology in which a large array of aboveground, in situ thermodynamic observations are needed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Paul M. Markowski, pmarkowski@psu.edu

Abstract

The severe storms research community lacks reliable, aboveground, thermodynamic observations (e.g., temperature, humidity, and pressure) in convective storms. These missing observations are crucial to understanding the behavior of both supercell storms (e.g., the generation, reorientation, and amplification of vorticity necessary for tornado formation) and larger-scale (mesoscale) convective systems (e.g., storm maintenance and the generation of damaging straight-line winds). This paper describes a novel way to use balloonborne probes to obtain aboveground thermodynamic observations. Each probe is carried by a pair of balloons until one of the balloons is jettisoned; the remaining balloon and probe act as a pseudo-Lagrangian drifter that is drawn through the storm. Preliminary data are presented from a pair of deployments in supercell storms in Oklahoma and Kansas during May 2017. The versatility of the observing system extends beyond severe storms applications into any area of mesoscale meteorology in which a large array of aboveground, in situ thermodynamic observations are needed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Paul M. Markowski, pmarkowski@psu.edu
Save
  • Beck, J. R., J. L. Schroeder, and J. M. Wurman, 2006: High-resolution, dual-Doppler analyses of the 29 May 2001 Kress, Texas, cyclic supercell. Mon. Wea. Rev., 134, 31253148, https://doi.org/10.1175/MWR3246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betten, D. P., M. I. Biggerstaff, and L. J. Wicker, 2017: A trajectory mapping technique for the visualization and analysis of three-dimensional flow in supercell storms. J. Atmos. Oceanic Technol., 34, 3349, https://doi.org/10.1175/JTECH-D-16-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1984: Relationships between radar-derived thermodynamic variables and tornadogenesis. Mon. Wea. Rev., 112, 10331052, https://doi.org/10.1175/1520-0493(1984)112<1033:RBRDTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and M. D. Parker, 2010: Observations of a squall line and its near environment using high-frequency rawinsonde launches during VORTEX2. Mon. Wea. Rev., 138, 40764097, https://doi.org/10.1175/2010MWR3359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M., D. R. MacGorman, C. L. Ziegler, and M. I. Biggerstaff, 2013: Evolution of lightning activity and storm charge relative to dual-Doppler analysis of a high-precipitation supercell storm. Mon. Wea. Rev., 141, 21992223, https://doi.org/10.1175/MWR-D-12-00258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M., E. R. Mansell, D. R. MacGorman, and D. C. Dowell, 2014: Numerical simulations of lightning and storm charge of the 29–30 May 2004 Geary, Oklahoma, supercell thunderstorm using EnKF mobile radar data assimilation. Mon. Wea. Rev., 142, 39773997, https://doi.org/10.1175/MWR-D-13-00403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and D. J. Stensrud, 2001: Simulation of a progressive derecho using composite initial conditions. Mon. Wea. Rev., 129, 15931616, https://doi.org/10.1175/1520-0493(2001)129<1593:SOAPDU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Correia, J. , Jr., and R. W. Arritt, 2008: Thermodynamic properties of mesoscale convective systems observed during BAMEX. Mon. Wea. Rev., 136, 42424271, https://doi.org/10.1175/2008MWR2284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davenport, C. E., and M. D. Parker, 2015: Observations of the 9 June 2009 dissipating supercell from VORTEX2. Wea. Forecasting, 30, 368388, https://doi.org/10.1175/WAF-D-14-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2015: A review of supercell and tornado dynamics. Atmos. Res., 158–159, 274291, https://doi.org/10.1016/j.atmosres.2014.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, https://doi.org/10.1175/2009MWR2956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., M. Xue, J. A. Milbrandt, and A. Shapiro, 2015: Sensitivity of real-data simulations of the 3 May 1999 Oklahoma City tornadic supercell and associated tornadoes to multimoment microphysics. Part I: Storm- and tornado-scale numerical forecasts. Mon. Wea. Rev., 143, 22412265, https://doi.org/10.1175/MWR-D-14-00279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev., 130, 26262648, https://doi.org/10.1175/1520-0493(2002)130<2626:TJMTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005, https://doi.org/10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engerer, N. A., D. J. Stensrud, and M. C. Coniglio, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 48394849, https://doi.org/10.1175/2008MWR2528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frame, J., P. Markowski, Y. Richardson, J. Straka, and J. Wurman, 2009: Polarimetric and dual-Doppler radar observations of the Lipscomb County, Texas, supercell thunderstorm on 23 May 2002. Mon. Wea. Rev., 137, 544561, https://doi.org/10.1175/2008MWR2425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106, 587606, https://doi.org/10.1175/1520-0493(1978)106<0587:AMFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132, 18971916, https://doi.org/10.1175/1520-0493(2004)132<1897:PAESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from Project ANSWERS. Mon. Wea. Rev., 135, 240246, https://doi.org/10.1175/MWR3288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hane, C. E., R. B. Wilhelmson, and T. Gal-Chen, 1981: Retrieval of thermodynamic variables within deep convective clouds: Experiments in three dimensions. Mon. Wea. Rev., 109, 564576, https://doi.org/10.1175/1520-0493(1981)109<0564:ROTVWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauser, D., F. Roux, and P. Amayenc, 1988: Comparison of two methods for the retrieval of thermodynamic and microphysical variables from Doppler radar measurements: Application to the case of a tropical squall line. J. Atmos. Sci., 45, 12851303, https://doi.org/10.1175/1520-0469(1988)045<1285:COTMFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., J. L. Schroeder, and C. C. Weiss, 2008: Surface analysis of the rear-flank downdraft outflow in two tornadic supercells. Mon. Wea. Rev., 136, 23442363, https://doi.org/10.1175/2007MWR2285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houston, A. L., B. Argrow, J. Elston, J. Lahowetz, E. W. Frew, and P. C. Kennedy, 2012: The Collaborative Colorado–Nebraska Unmanned Aircraft System Experiment. Bull. Amer. Meteor. Soc., 93, 3954, https://doi.org/10.1175/2011BAMS3073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, R. P., P. M. Markowski, and J. M. Fritsch, 2006: Bow echo sensitivity to ambient moisture and cold pool strength. Mon. Wea. Rev., 134, 950964, https://doi.org/10.1175/MWR3109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klees, A. M., Y. P. Richardson, P. M. Markowski, C. Weiss, J. M. Wurman, and K. K. Kosiba, 2016: Comparison of the tornadic and nontornadic supercells intercepted by VORTEX2 on 10 June 2010. Mon. Wea. Rev., 144, 32013231, https://doi.org/10.1175/MWR-D-15-0345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado (5 June 2009). Mon. Wea. Rev. ,141, 11571181, https://doi.org/10.1175/MWR-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majcen, M., P. Markowski, Y. Richardson, D. Dowell, and J. Wurman, 2008: Multipass objective analyses of radar data. J. Atmos. Oceanic Technol., 25, 18451858, https://doi.org/10.1175/2008JTECHA1089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2009: Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmos. Res., 93, 310, https://doi.org/10.1016/j.atmosres.2008.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., M. Majcen, Y. P. Richardson, J. Marquis, and J. Wurman, 2011: Characteristics of the wind field in three nontornadic low-level mesocyclones observed by the Doppler On Wheels radars. Electron. J. Severe Storms Meteor., 6 (3), www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/75.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 28872915, https://doi.org/10.1175/MWR-D-11-00336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J. N., Y. P. Richardson, J. M. Wurman, and P. M. Markowski, 2008: Single- and dual-Doppler analysis of a tornadic vortex and surrounding storm-scale flow in the Crowell, Texas, supercell of 30 April 2000. Mon. Wea. Rev., 136, 50175043, https://doi.org/10.1175/2008MWR2442.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J. N., Y. P. Richardson, P. Markowski, D. Dowell, and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327, https://doi.org/10.1175/MWR-D-11-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J. N., Y. P. Richardson, P. Markowski, D. Dowell, J. Wurman, K. Kosiba, and P. Robinson, 2014: An investigation of the Goshen County, Wyoming, tornadic supercell of 5 June 2009 using EnKF assimilation of mobile radar data collected during VORTEX2. Part I: Experiment design and verification of the EnKF analyses. Mon. Wea. Rev., 142, 530554, https://doi.org/10.1175/MWR-D-13-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J. N., Y. P. Richardson, P. Markowski, D. Dowell, J. Wurman, and K. Kosiba, 2016: An investigation of the Goshen County, Wyoming, tornadic supercell of 5 June 2009 using EnKF assimilation of mobile mesonet and radar observations collected during VORTEX2. Part II: Mesocyclone-scale processes affecting tornado formation, maintenance, and decay. Mon. Wea. Rev., 144, 34413463, https://doi.org/10.1175/MWR-D-15-0411.1.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V., D. Zrnić, A. Ryzhkov, A. Zaharai, and J. Carter, 2009: Validation of attenuation correction at X band performed with collocated S-band polarimetric radar. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 11A.5, https://ams.confex.com/ams/34Radar/techprogram/paper_155322.htm.

  • Palmer, R. D., and Coauthors, 2009: Weather radar education at the University of Oklahoma: An integrated interdisciplinary approach. Bull. Amer. Meteor. Soc., 90, 12771282, https://doi.org/10.1175/2009BAMS2738.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., L. J. Wicker, M. I. Biggerstaff, D. Betten, and A. Shapiro, 2013: Comparison between dual-Doppler and EnKF storm-scale wind analyses: The 29–30 May 2004 Geary, Oklahoma, supercell thunderstorm. Mon. Wea. Rev., 141, 16121628, https://doi.org/10.1175/MWR-D-12-00308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riganti, C. J., and A. L. Houston, 2017: Rear-flank outflow dynamics and thermodynamics in the 10 June 2010 Last Chance, Colorado, supercell. Mon. Wea. Rev., 145, 24872504, https://doi.org/10.1175/MWR-D-16-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B., M. Xue, A. D. Schenkman, and D. T. Dawson II, 2016: The role of surface drag in tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 73, 33713395, https://doi.org/10.1175/JAS-D-15-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and A. Shapiro, 2012: Tornadogenesis in a simulated mesovortex within a mesoscale convective system. J. Atmos. Sci., 69, 33723390, https://doi.org/10.1175/JAS-D-12-038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D, M. Xue, and M. Hu, 2014: Tornadogenesis in a high-resolution simulation of the 8 May 2003 Oklahoma City supercell. J. Atmos. Sci., 71, 130154, https://doi.org/10.1175/JAS-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shabbott, C. J., and P. M. Markowski, 2006: Surface in situ observations within the outflow of forward-flank downdrafts of supercell thunderstorms. Mon. Wea. Rev., 134, 14221441, https://doi.org/10.1175/MWR3131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, M. M. French, H. B. Bluestein, P. M. Markowski, and Y. P. Richardson, 2014: VORTEX2 observations of a low-level mesocyclone with multiple internal rear-flank downdraft momentum surges in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 142, 29352960, https://doi.org/10.1175/MWR-D-13-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P. S, C. C. Weiss, L. J. Wicker, C. K. Potvin, and D. C. Dowell, 2015: Forcing mechanisms for an internal rear-flank downdraft momentum surge in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 143, 43054330, https://doi.org/10.1175/MWR-D-15-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., and M. Xue, 2008: Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms. Geophys. Res. Lett. ,35, L24803, https://doi.org/10.1029/2008GL035866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., M. C. Coniglio, R. P. Davies-Jones, and J. S. Evans, 2005: Comments on “‘A theory for strong long-lived squall lines’ revisited.” J. Atmos. Sci., 62, 29892996, https://doi.org/10.1175/JAS3514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, and S. E. Fredrickson, 1996: A mobile mesonet for finescale meteorological observations. J. Atmos. Oceanic Technol., 13, 921936, https://doi.org/10.1175/1520-0426(1996)013<0921:AMMFFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., L. J. Wicker, D. C. Dowell, H. B. Bluestein, D. T. Dawson II, and M. Xue, 2013: EnKF assimilation of high-resolution, mobile Doppler radar data of the 4 May 2007 Greensburg, Kansas, supercell into a numerical cloud model. Mon. Wea. Rev., 141, 625648, https://doi.org/10.1175/MWR-D-12-00099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., 1999: Observations of nontornadic low-level mesocyclones and attendant tornadogenesis failure during VORTEX. Mon. Wea. Rev., 127, 16931705, https://doi.org/10.1175/1520-0493(1999)127<1693:OONLLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and N. T. Atkins, 1996: Observations on the origins of rotation: The Newcastle tornado during VORTEX94. Mon. Wea. Rev., 124, 384407, https://doi.org/10.1175/1520-0493(1996)124<0384:OOTOOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and H. Cai, 2000: Analysis of a nontornadic storm during VORTEX95. Mon. Wea. Rev., 128, 565592, https://doi.org/10.1175/1520-0493(2000)128<0565:AOANSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., C. Liu, and H. Cai, 1998: The Garden City, Kansas, storm during VORTEX95. Part I: Overview of the storm life cycle and mesocyclogenesis. Mon. Wea. Rev., 126, 372392, https://doi.org/10.1175/1520-0493(1998)126<0372:TGCKSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, S., and S. E. Fredrickson, 2010: An improved aspirated temperature system for mobile meteorological observations, especially in severe weather. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P5.2.

  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2005: Reply. J. Atmos. Sci., 62, 29973002, https://doi.org/10.1175/JAS3515.1.

  • Weiss, C. C., and J. L. Schroeder, 2008: StickNet: A new portable, rapidly deployable surface observation system. Bull. Amer. Meteor. Soc., 89, 15021503.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., D. C. Dowell, J. L. Schroeder, P. S. Skinner, A. E. Reinhart, P. M. Markowski, and Y. P. Richardson, 2015: A comparison of near-surface buoyancy and baroclinity across three VORTEX2 supercell intercepts. Mon. Wea. Rev., 143, 27362753, https://doi.org/10.1175/MWR-D-14-00307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., 2001: The DOW mobile multiple Doppler network. 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., P3.3, http://ams.confex.com/ams/pdfpapers/21572.pdf.

  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512, https://doi.org/10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007a: Dual-Doppler analysis of winds and vorticity budget terms near a tornado. Mon. Wea. Rev., 135, 23922405, https://doi.org/10.1175/MWR3404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007b: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758, https://doi.org/10.1175/MWR3276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. A. Kosiba, P. Markowski, Y. Richardson, D. Dowell, and P. Robinson, 2010: Finescale and dual-Doppler analysis of tornado intensification, maintenance, and dissipation in the Orleans, Nebraska, tornadic supercell. Mon. Wea. Rev., 138, 44394455, https://doi.org/10.1175/2010MWR3330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., M. Xue, and Y. Wang, 2015: The genesis of mesovortices within a real-data simulation of a bow echo system. J. Atmos. Sci., 72, 19631986, https://doi.org/10.1175/JAS-D-14-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. N. Rasmussen, T. R. Shepherd, A. I. Watson, and J. M. Straka, 2001: The evolution of low-level rotation in the 29 May 1994 Newcastle–Graham, Texas, storm complex during VORTEX. Mon. Wea. Rev., 129, 13391368, https://doi.org/10.1175/1520-0493(2001)129<1339:TEOLLR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1325 554 30
PDF Downloads 581 163 36