27 Years of Regional Cooperation for Limited Area Modelling in Central Europe

Yong Wang Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria

Search for other papers by Yong Wang in
Current site
Google Scholar
PubMed
Close
,
Martin Belluš Slovak Hydrometeorological Institute, Bratislava, Slovakia

Search for other papers by Martin Belluš in
Current site
Google Scholar
PubMed
Close
,
Andrea Ehrlich Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria

Search for other papers by Andrea Ehrlich in
Current site
Google Scholar
PubMed
Close
,
Máté Mile Hungarian Meteorological Service, Budapest, Hungary

Search for other papers by Máté Mile in
Current site
Google Scholar
PubMed
Close
,
Neva Pristov Meteorology and Hydrology Office, Slovenian Environment Agency, Ljubljana, Slovenia

Search for other papers by Neva Pristov in
Current site
Google Scholar
PubMed
Close
,
Petra Smolíková Czech Hydrometeorological Institute, Prague, Czech Republic

Search for other papers by Petra Smolíková in
Current site
Google Scholar
PubMed
Close
,
Oldřich Španiel Slovak Hydrometeorological Institute, Bratislava, Slovakia

Search for other papers by Oldřich Španiel in
Current site
Google Scholar
PubMed
Close
,
Alena Trojáková Czech Hydrometeorological Institute, Prague, Czech Republic

Search for other papers by Alena Trojáková in
Current site
Google Scholar
PubMed
Close
,
Radmila Brožková Czech Hydrometeorological Institute, Prague, Czech Republic

Search for other papers by Radmila Brožková in
Current site
Google Scholar
PubMed
Close
,
Jure Cedilnik Meteorology and Hydrology Office, Slovenian Environment Agency, Ljubljana, Slovenia

Search for other papers by Jure Cedilnik in
Current site
Google Scholar
PubMed
Close
,
Dijana Klarić Meteorological and Hydrological Service, Zagreb, Croatia

Search for other papers by Dijana Klarić in
Current site
Google Scholar
PubMed
Close
,
Tomislav Kovačić Meteorological and Hydrological Service, Zagreb, Croatia

Search for other papers by Tomislav Kovačić in
Current site
Google Scholar
PubMed
Close
,
Ján Mašek Czech Hydrometeorological Institute, Prague, Czech Republic

Search for other papers by Ján Mašek in
Current site
Google Scholar
PubMed
Close
,
Florian Meier Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria

Search for other papers by Florian Meier in
Current site
Google Scholar
PubMed
Close
,
Balázs Szintai Hungarian Meteorological Service, Budapest, Hungary

Search for other papers by Balázs Szintai in
Current site
Google Scholar
PubMed
Close
,
Simona Tascu National Meteorological Administration, Bucharest, Romania

Search for other papers by Simona Tascu in
Current site
Google Scholar
PubMed
Close
,
Jozef Vivoda Slovak Hydrometeorological Institute, Bratislava, Slovakia

Search for other papers by Jozef Vivoda in
Current site
Google Scholar
PubMed
Close
,
Clemens Wastl Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria

Search for other papers by Clemens Wastl in
Current site
Google Scholar
PubMed
Close
, and
Christoph Wittmann Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria

Search for other papers by Christoph Wittmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes 27 years of scientific and operational achievement of Regional Cooperation for Limited Area Modelling in Central Europe (RC LACE), which is supported by the national (hydro-) meteorological services of Austria, Croatia, the Czech Republic, Hungary, Romania, Slovakia, and Slovenia. The principal objectives of RC LACE are to 1) develop and operate the state-of-the-art limited-area model and data assimilation system in the member states and 2) conduct joint scientific and technical research to improve the quality of the forecasts.

In the last 27 years, RC LACE has contributed to the limited-area Aire Limitée Adaptation Dynamique Développement International (ALADIN) system in the areas of preprocessing of observations, data assimilation, model dynamics, physical parameterizations, mesoscale and convection-permitting ensemble forecasting, and verification. It has developed strong collaborations with numerical weather prediction (NWP) consortia ALADIN, the High Resolution Limited Area Model (HIRLAM) group, and the European Centre for Medium-Range Weather Forecasts (ECMWF). RC LACE member states exchange their national observations in real time and operate a common system that provides member states with the preprocessed observations for data assimilation and verification. RC LACE runs operationally a common mesoscale ensemble system, ALADIN–Limited Area Ensemble Forecasting (ALADIN-LAEF), over all of Europe for early warning of severe weather.

RC LACE has established an extensive regional scientific and technical collaboration in the field of operational NWP for weather research, forecasting, and applications. Its 27 years of experience have demonstrated the value of regional cooperation among small- and medium-sized countries for success in the development of a modern forecasting system, knowledge transfer, and capacity building.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Yong Wang, wang@zamg.ac.at

Abstract

This paper describes 27 years of scientific and operational achievement of Regional Cooperation for Limited Area Modelling in Central Europe (RC LACE), which is supported by the national (hydro-) meteorological services of Austria, Croatia, the Czech Republic, Hungary, Romania, Slovakia, and Slovenia. The principal objectives of RC LACE are to 1) develop and operate the state-of-the-art limited-area model and data assimilation system in the member states and 2) conduct joint scientific and technical research to improve the quality of the forecasts.

In the last 27 years, RC LACE has contributed to the limited-area Aire Limitée Adaptation Dynamique Développement International (ALADIN) system in the areas of preprocessing of observations, data assimilation, model dynamics, physical parameterizations, mesoscale and convection-permitting ensemble forecasting, and verification. It has developed strong collaborations with numerical weather prediction (NWP) consortia ALADIN, the High Resolution Limited Area Model (HIRLAM) group, and the European Centre for Medium-Range Weather Forecasts (ECMWF). RC LACE member states exchange their national observations in real time and operate a common system that provides member states with the preprocessed observations for data assimilation and verification. RC LACE runs operationally a common mesoscale ensemble system, ALADIN–Limited Area Ensemble Forecasting (ALADIN-LAEF), over all of Europe for early warning of severe weather.

RC LACE has established an extensive regional scientific and technical collaboration in the field of operational NWP for weather research, forecasting, and applications. Its 27 years of experience have demonstrated the value of regional cooperation among small- and medium-sized countries for success in the development of a modern forecasting system, knowledge transfer, and capacity building.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Yong Wang, wang@zamg.ac.at
Save
  • Bašták Ďurán, I., J.-F. Geleyn, and F. Váňa, 2014: A compact model for the stability dependency of TKE production–destruction–conversion terms valid for the whole range of Richardson numbers. J. Atmos. Sci., 71, 30043026, https://doi.org/10.1175/JAS-D-13-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belluš, M., Y. Wang, and F. Meier, 2016: Perturbing surface initial conditions in a regional ensemble prediction system. Mon. Wea. Rev., 144, 33773390, https://doi.org/10.1175/MWR-D-16-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bénard, P., 2003: Stability of semi-implicit and iterative centered-implicit time discretizations for various equation systems used in NWP. Mon. Wea. Rev., 131, 24792491, https://doi.org/10.1175/1520-0493(2003)131<2479:SOSAIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bénard, P., R. Laprise, J. Vivoda, and P. Smolíková, 2004: Stability of leapfrog constant-coefficients semi-implicit schemes for the fully elastic system of Euler equations: Flat-terrain case. Mon. Wea. Rev., 132, 13061318, https://doi.org/10.1175/1520-0493(2004)132<1306:SOLCSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bénard, P., J. Mašek, and P. Smolíková, 2005: Stability of leapfrog constant-coefficients semi-implicit schemes for the fully elastic system of Euler equations: Case with orography. Mon. Wea. Rev., 133, 10651075, https://doi.org/10.1175/MWR2907.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bénard, P., J. Vivoda, J. Mašek, P. Smolíková, K. Yessad, Ch. Smith, R. Brožková, and J.-F. Geleyn, 2010: Dynamical kernel of the Aladin–NH spectral limited-area model: Revised formulation and sensitivity experiments. Quart. J. Roy. Meteor. Soc., 136A, 155169, https://doi.org/10.1002/qj.522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bölöni, G., 2005: Operational implementation of ALADIN 3DVAR at the Hungarian Meteorological Service. ALADIN Newsletter, No. 28, CNRM, Toulouse, France, 60–65, www.umr-cnrm.fr/aladin-old/newsletters/news28/PAPERS/BOLONI.pdf.

  • Bölöni, G., 2006: Development of a variational data assimilation system for a limited-area model at the Hungarian Meteorological Service. Idojaras, 110, 309327.

    • Search Google Scholar
    • Export Citation
  • Brožková, R., and Coauthors, 2001: DFI blending: An alternative tool for preparation of the initial conditions for LAM. PWRP Rep. 31 (CAS/JSC WGNE Rep.), WMO/TD-1064, 1–7.

  • Brožková, R., M. Derková, M. Belluš, and A. Farda, 2006: Atmospheric forcing by ALADIN/MFSTEP and MFSTEP oriented tunings. Ocean Sci., 2, 113121, https://doi.org/10.5194/os-2-113-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bubnová, R., G. Hello, P. Bénard, and J.-F. Geleyn, 1995: Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system. Mon. Wea. Rev., 123, 515535, https://doi.org/10.1175/1520-0493(1995)123<0515:IOTFEE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bučánek, A., A. Trojáková, and R. Brožková, 2015: The BlendVar assimilation scheme at CHMI. Meteor. Zpr., 68, 180185.

  • Catry, B., J.-F. Geleyn, M. Tudor, P. Bénard, and A. Trojáková, 2007: Flux-conservative thermodynamic equations in a mass-weighted framework. Tellus, 59A, 7179, https://doi.org/10.1111/j.1600-0870.2006.00212.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., and J.-F. Geleyn, 1988: A global numerical weather prediction model with variable resolution: Application to the shallow water equations. Quart. J. Roy. Meteor. Soc., 114, 13211346, https://doi.org/10.1002/qj.49711448309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csomós, P., and G. Bölöni, 2009: First steps towards the application of the ensemble transform Kalman filter technique at the Hungarian Meteorological Service. HIRLAM Newsletter, No. 54, KNMI, De Bilt, Netherlands, 9–19, http://hirlam.org/index.php/publications-54/hirlam-newsletters-a/doc_download/127-hirlam-newsletter-no-54-paper-02-csomos.

  • Derková, M., and M. Belluš, 2007: Various applications of the blending by digital filter technique in the ALADIN numerical weather prediction system. Meteor. Cas., 10, 2736.

    • Search Google Scholar
    • Export Citation
  • Duan, Y., and Coauthors, 2012: An overview of the Beijing 2008 Olympics Research and Development Project (B08RDP). Bull. Amer. Meteor. Soc., 93, 381403, https://doi.org/10.1175/BAMS-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P., and Coauthors, 2017: Exploring the convective grey zone with regional simulations of a cold air outbreak. Quart. J. Roy. Meteor. Soc., 143, 25372555, https://doi.org/10.1002/qj.3105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, C., T. Montmerle, L. Berre, L. Auger, and S. Stefanescu, 2005: An overview of the variational assimilation in the ALADIN/France numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 131, 34773492, https://doi.org/10.1256/qj.05.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geleyn, J.-F., B. Catry, Y. Bouteloup, and R. Brožková, 2008: A statistical approach for sedimentation inside a micro-physical precipitation scheme. Tellus, 60A, 649662, https://doi.org/10.1111/j.1600-0870.2008.00323.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geleyn, J.-F., J. Mašek, R. Brožková, P. Kuma, D. Degrauwe, G. Hello, and N. Pristov, 2017: Single interval longwave radiation scheme based on the net exchanged rate decomposition with bracketing. Quart. J. Roy. Meteor. Soc., 143, 13131335, https://doi.org/10.1002/qj.3006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerard, L., J.-M. Piriou, R. Brožková, J.-F. Geleyn, and D. Banciu, 2009: Cloud and precipitation parameterization in a meso-gamma-scale operational weather prediction model. Mon. Wea. Rev., 137, 39603977, https://doi.org/10.1175/2009MWR2750.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giard, D., and E. Bazile, 2000: Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Mon. Wea. Rev., 128, 9971015, https://doi.org/10.1175/1520-0493(2000)128<0997:IOANAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guidard, V., and C. Fischer, 2008: Introducing the coupling information in a limited-area variational assimilation. Quart. J. Roy. Meteor. Soc., 134, 723735, https://doi.org/10.1002/qj.215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guidard, V., C. Fischer, M. Nuret, and A. Džiedžic, 2006: Evaluation of the ALADIN 3D-VAR with observations of the MAP campaign. Meteor. Atmos. Phys., 92, 161173, https://doi.org/10.1007/s00703-005-0156-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haiden, T., A. Kann, C. Wittmann, G. Pistotnik, B. Bica, and C. Gruber, 2011: The Integrated Nowcasting through Comprehensive Analysis (INCA) system and its validation over the eastern Alpine region. Wea. Forecasting, 26, 166183, https://doi.org/10.1175/2010WAF2222451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hortal, M., 2002: The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model. Quart. J. Roy. Meteor. Soc., 128, 16711687, https://doi.org/10.1002/qj.200212858314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and B. Macpherson, 1997: A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model. Meteor. Appl., 4, 269277, https://doi.org/10.1017/S1350482797000522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

    • Crossref
    • Export Citation
  • Kiktev, D., and Coauthors, 2017: FROST-2014: The Sochi Winter Olympics international project. Bull. Amer. Meteor. Soc., 98, 19081929, https://doi.org/10.1175/BAMS-D-15-00307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafore, J. P., and Coauthors, 1998: The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16, 90109, https://doi.org/10.1007/s00585-997-0090-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laprise, R., 1992: The Euler equations of motion with hydrostatic pressure as an independent variable. Mon. Wea. Rev., 120, 197207, https://doi.org/10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 35153539, https://doi.org/10.1016/j.jcp.2007.02.014.

  • Mašek, J., J.-F. Geleyn, R. Brožková, O. Giot, H. O. Achom, and P. Kuma, 2016: Single interval shortwave radiation scheme with parameterized optical saturation and spectral overlaps. Quart. J. Roy. Meteor. Soc., 142, 304326, https://doi.org/10.1002/qj.2653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, F., 2015: Radar assimilation and latent heat nudging in AROME Nowcasting/AROME-PI. RC LACE Stay Rep., 22 pp., www.rclace.eu/File/Data_Assimilation/2015/reportLACEstaymeierautumn2015.pdf.

  • Mesinger, F., 2001: Limited area modeling: Beginnings, state of the art, outlook. 50th Anniversary of Numerical Weather Prediction Commemorative Symposium, A. Spekat, Ed., Deutsche Meteorologische Gesellschaft, 91–118.

  • Mile, M., and R. Randriamampianina, 2012: The impact of high resolution winds on the ALADIN Hungary model. Proc. 2012 EUMETSAT Meteorological Satellite Conf., Sopot, Poland, EUMETSAT, 8 pp., www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P61_S7_03_MILE_V&RevisionSelectionMethod=LatestReleased&Rendition=Web.

  • Mile, M., G. Bölöni, R. Randriamampianina, R. Steib, and E. Kucukkaraca, 2015: Overview of mesoscale data assimilation developments at the Hungarian Meteorological Service. Idojaras, 119, 215239.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 42 pp., www.ecmwf.int/sites/default/files/elibrary/2009/11577-stochastic-parametrization-and-model-uncertainty.pdf.

  • Radnóti, G., and Coauthors, 1995: The spectral limited area model ARPEGE/ALADIN. PWRP Rep. 7, 111117.

  • Randriamampianina, R., 2006: Investigation of the AMV data derived from Meteosat-8 in the ALADIN/HU data assimilation system. Proc. Eighth Int. Winds Workshop, Bejing, China, EUMETSAT, 8 pp., www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P47_S2_06_RANDRIAMA_V&RevisionSelectionMethod=LatestReleased&Rendition=Web.

  • Schellander-Gorgas, T., Y. Wang, F. Meier, F. Weidle, Ch. Wittmann, and A. Kann, 2017: On the forecast skills of a convection-permitting ensemble. Geosci. Model Dev., 10, 3556, https://doi.org/10.5194/gmd-10-35-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, S., Y. Wang, W. Wagner, and J. F. Mahfouf, 2014: Impact of ASCAT soil moisture assimilation on regional precipitation forecasts: A case study for Austria. Mon. Wea. Rev., 142, 15251541, https://doi.org/10.1175/MWR-D-12-00311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, https://doi.org/10.1175/2010MWR3425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766, https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Široká, M., C. Fischer, V. Casse, R. Brozkova, and J.-F. Geleyn, 2003: The definition of mesoscale selective forecast error covariances for a limited area variational analysis. Meteor. Atmos. Phys., 82, 227244, https://doi.org/10.1007/s00703-001-0588-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strajnar, B., 2008: Implementation and test of spatially varying (climatological and flow-dependent) background error variances in ALADIN. Météo-France Stay Rep., 19 pp., www.umr-cnrm.fr/aladin/IMG/pdf/pdf_STRAJNAR.pdf.

  • Strajnar, B., 2012: Validation of Mode-S Meteorological Routine Air Report aircraft observations. J. Geophys. Res., 117, D23110, https://doi.org/10.1029/2012JD018315.

    • Search Google Scholar
    • Export Citation
  • Strajnar, B., N. Žagar, and L. Berre, 2015: Impact of new aircraft observations Mode-S MRAR in a mesoscale NWP model. J. Geophys. Res. Atmos., 120, 39203938, https://doi.org/10.1002/2014JD022654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Termonia, P., and Coauthors, 2018: The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1. Geosci. Model Dev., 11, 257281, https://doi.org/10.5194/gmd-11-257-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Untch, A., and M. Hortal, 2004: A finite-element scheme for the vertical discretization of the semi-Lagrangian version of the ECMWF forecast model. Quart. J. Roy. Meteor. Soc., 130, 15051530, https://doi.org/10.1256/qj.03.173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Váňa, F., P. Bénard, J.-F. Geleyn, A. Simon, and Y. Seity, 2008: Semi-Lagrangian advection scheme with controlled damping: An alternative to nonlinear horizontal diffusion in a numerical weather prediction model. Quart. J. Roy. Meteor. Soc., 134, 523537, https://doi.org/10.1002/qj.220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivoda, J., and P. Smolíková, 2013: Finite elements used in the vertical discretization of the fully compressible forecast model ALADIN-NH. ALADIN–HIRLAM Newsletter, No. 1, KNMI, De Bilt, Netherlands, and IRM, Bruxelles, Belgium, 31–46, www.umr-cnrm.fr/aladin/IMG/pdf/aladin_hirlam_newsletter_1_september2013.pdf.

  • Wagner, W., and Coauthors, 2013: The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications. Meteor. Z., 22, 533, https://doi.org/10.1127/0941-2948/2013/0399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., A. Kann, M. Belluš, J. Pailleux, and C. Wittmann, 2010: A strategy for perturbing surface initial conditions in LAMEPS. Atmos. Sci. Lett., 11, 108113, https://doi.org/10.1002/asl.260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2011: The central European limited-area ensemble forecasting system: ALADIN-LAEF. Quart. J. Roy. Meteor. Soc., 137, 483502, https://doi.org/10.1002/qj.751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., S. Tascu, F. Weidle, and K. Schmeisser, 2012: Evaluation of the added values of regional ensemble forecast on global ensemble forecast. Wea. Forecasting, 27, 972987, https://doi.org/10.1175/WAF-D-11-00102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., M. Belluš, J. Geleyn, X. Ma, W. Tian, and F. Weidle, 2014: A new method for generating initial perturbations in regional ensemble prediction system: Blending. Mon. Wea. Rev., 142, 20432059, https://doi.org/10.1175/MWR-D-12-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2017: Integrating nowcasting with crisis management and risk prevention in a transnational and interdisciplinary framework. Meteor. Z., 26, 459473, https://doi.org/10.1127/metz/2017/0843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weidle, F., Y. Wang, and G. Smet, 2016: On the impact of the choice of global ensemble in forcing a regional ensemble system. Wea. Forecasting, 31, 515530, https://doi.org/10.1175/WAF-D-15-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, X., V. Ducrocq, P. Poli, G. Jaubert, and A. Walpersdorf, 2008: Mesoscale GPS zenith delay assimilation during a Mediterranean heavy precipitation event. Adv. Geosci., 17, 7177, https://doi.org/10.5194/adgeo-17-71-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., 2005: Analysis blending using a spatial filter in grid-point model coupling. HIRLAM Newsletter, No. 48, KNMI, De Bilt, Netherlands, 49–55.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 653 177 14
PDF Downloads 370 59 10