• Adams, A. M., J. M. Prospero, and C. Zhang, 2012: CALIPSO-derived three-dimensional structure of aerosol over the Atlantic basin and adjacent continents. J. Climate, 25, 68626879, https://doi.org/10.1175/JCLI-D-11-00672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albani, S., and N. M. Mahowald, 2019: Paleodust insights into dust impacts on climate. J. Climate, 32, 78977913, https://doi.org/10.1175/JCLI-D-18-0742.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aldhaif, A. M., D. H. Lopez, H. Dadashazar, and A. Sorooshian, 2020: Sources, frequency, and chemical nature of dust events impacting the United States East Coast. Atmos. Environ., 231, 117456, https://doi.org/10.1016/j.atmosenv.2020.117456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archibald, A., and et al. , 2015: Long-term high frequency measurements of ethane, benzene and methyl chloride at Ragged Point, Barbados: Identification of long-range transport events. Elementa, 3, 000068, https://doi.org/10.12952/journal.elementa.000068.

    • Search Google Scholar
    • Export Citation
  • Armitage, S. J., C. S. Bristow, and N. A. Drake, 2015: West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad. Proc. Natl. Acad. Sci. USA, 112, 85438548, https://doi.org/10.1073/pnas.1417655112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bandermann, L. W., and S. F. Singer, 1969: Interplanetary dust measurements near the Earth. Rev. Geophys., 7, 759797, https://doi.org/10.1029/RG007i004p00759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkley, A. E., and et al. , 2019: African biomass burning is a substantial source of phosphorus deposition to the Amazon, tropical Atlantic Ocean, and Southern Ocean. Proc. Natl. Acad. Sci., 116, 16 21616 221, https://doi.org/10.1073/pnas.1906091116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkley, A. E., and et al. , 2021: Atmospheric transport of North African dust-bearing supermicron freshwater diatoms to South America: Implications for iron transport to the equatorial North Atlantic Ocean. Geophys. Res. Lett., 48, e2020GL090476, https://doi.org/10.1029/2020GL090476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ben-Ami, Y., I. Koren, Y. Rudich, P. Artaxo, S. T. Martin, and M. O. Andreae, 2010: Transport of North African dust from the Bodélé depression to the Amazon basin: A case study. Atmos. Chem. Phys., 10, 75337544, https://doi.org/10.5194/acp-10-7533-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bercos-Hickey, E., T. R. Nathan, and S.-H. Chen, 2020: On the relationship between the African easterly jet, Saharan mineral dust aerosols, and West African precipitation. J. Climate, 33, 35333546, https://doi.org/10.1175/JCLI-D-18-0661.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biscaye, P. E., 1965: Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Amer. Bull., 76, 803832, https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohlmann, S., H. Baars, M. Radenz, R. Engelmann, and A. Macke, 2018: Ship-borne aerosol profiling with lidar over the Atlantic Ocean: From pure marine conditions to complex dust–smoke mixtures. Atmos. Chem. Phys., 18, 96619679, https://doi.org/10.5194/acp-18-9661-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and et al. , 2017: EUREC4A: A field campaign to elucidate the couplings between clouds, convection and circulation. Surv. Geophys., 38, 15291568, https://doi.org/10.1007/s10712-017-9428-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bozlaker, A., J. M. Prospero, M. P. Fraser, and S. Chellam, 2013: Quantifying the contribution of long-range Saharan dust transport on particulate matter concentrations in Houston, Texas, using detailed elemental analysis. Environ. Sci. Technol., 47, 10 17910 187, https://doi.org/10.1021/es4015663.

    • Search Google Scholar
    • Export Citation
  • Bozlaker, A., J. M. Prospero, J. Price, and S. Chellam, 2018: Linking Barbados mineral dust aerosols to North African sources using elemental composition and radiogenic Sr, Nd, and Pb isotope signatures. J. Geophys. Res. Atmos., 123, 13841400, https://doi.org/10.1002/2017JD027505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bozlaker, A., J. M. Prospero, J. Price, and S. Chellam, 2019: Identifying and quantifying the impacts of advected North African dust on the concentration and composition of airborne fine particulate matter in Houston and Galveston, Texas. J. Geophys. Res. Atmos., 124, 12 28212 300, https://doi.org/10.1029/2019JD030792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., J. A. Sippel, and D. S. Nolan, 2012: The impact of dry midlevel air on hurricane intensity in idealized simulations with no mean flow. J. Atmos. Sci., 69, 236257, https://doi.org/10.1175/JAS-D-10-05007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bristow, C. S., K. A. Hudson-Edwards, and A. Chappell, 2010: Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys. Res. Lett., 37, L14807, https://doi.org/10.1029/2010GL043486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1969: Synoptic histories of three African disturbances that developed into Atlantic hurricanes. Mon. Wea. Rev., 97, 256276, https://doi.org/10.1175/1520-0493(1969)097<0256:SHOTAD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and J. M. Prospero, 1972: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteor., 11, 283297, https://doi.org/10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and R. S. Caverly, 1977: Radiative characteristics of Saharan dust at solar wavelengths. J. Geophys. Res., 82, 31413152, https://doi.org/10.1029/JC082i021p03141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and S. G. Benjamin, 1980: Radiative heating rates for Saharan dust. J. Atmos. Sci., 37, 193213, https://doi.org/10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, M., and et al. , 2014: Multi-decadal aerosol variations from 1980 to 2009: A perspective from observations and a global model. Atmos. Chem. Phys., 14, 36573690, https://doi.org/10.5194/acp-14-3657-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darwin, C., 1846: An account of the fine dust which often falls on vessels in the Atlantic Ocean. Quart. J. Geol. Soc., 2, 2630, https://doi.org/10.1144/GSL.JGS.1846.002.01-02.09.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, P. A., 1971: Applications of an airborne ruby lidar during a BOMEX program of cirrus observations. J. Appl. Meteor., 10, 13141323, https://doi.org/10.1175/1520-0450(1971)010<1314:AOAARL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delany, A., A. C. Delany, D. Parkin, J. Griffin, E. Goldberg, and B. Reimann, 1967: Airborne dust collected at Barbados. Geochim. Cosmochim. Acta, 31, 885909, https://doi.org/10.1016/S0016-7037(67)80037-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denjean, C., and et al. , 2016: Size distribution and optical properties of African mineral dust after intercontinental transport. J. Geophys. Res. Atmos., 121, 71177138, https://doi.org/10.1002/2016JD024783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drummond, A. J., and G. D. Robinson, 1974: Some measurements of the attenuation of solar radiation during BOMEX. Appl. Opt., 13, 487492, https://doi.org/10.1364/AO.13.000487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duce, R. A., 1997: Christian Junge (1912–1996). Eos, Trans. Amer. Geophys. Union, 78, 3940, https://doi.org/10.1029/97EO00026.

  • Duce, R. A., and E. J. Hoffman, 1976: Chemical fractionation at the air/sea interface. Annu. Rev. Earth Planet. Sci., 4, 187228, https://doi.org/10.1146/annurev.ea.04.050176.001155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353366, https://doi.org/10.1175/BAMS-85-3-353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., C. Flamant, M. Gaetani, and F. Guichard, 2016: The past, present and future of African dust. Nature, 531, 493495, https://doi.org/10.1038/nature17149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleagle, R. G., 1972: BOMEX: An appraisal of results. Science, 176, 10791084, https://doi.org/10.1126/science.176.4039.1079.

  • Formenti, P., and et al. , 2011: Recent progress in understanding physical and chemical properties of mineral dust. Atmos. Chem. Phys., 11, 82318256, https://doi.org/10.5194/acp-11-8231-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garstang, M., N. LaSeur, K. Warsh, R. Hadlock, and J. Petersen, 1970: Atmospheric-oceanic observations in the tropics: Direct observation of interacting scales of motion in the tropical ocean-atmosphere system provides the basis for viewing the atmosphere as a heat-driven system. Amer. Sci., 58, 482495.

    • Search Google Scholar
    • Export Citation
  • Gasteiger, J., S. Groß, D. Sauer, M. Haarig, A. Ansmann, and B. Weinzierl, 2017: Particle settling and vertical mixing in the Saharan air layer as seen from an integrated model, lidar, and in situ perspective. Atmos. Chem. Phys., 17, 297311, https://doi.org/10.5194/acp-17-297-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geological Society of America, 1994: Memorial to Guillermo Zuloaga, 1904-1984. Geol. Soc. Amer. Meml., 25, 3.

  • Ghan, S. J., X. Liu, R. C. Easter, R. Zaveri, P. J. Rasch, J.-H. Yoon, and B. Eaton, 2012: Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J. Climate, 25, 64616476, https://doi.org/10.1175/JCLI-D-11-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginoux, P., J. M. Prospero, T. E. Gill, N. C. Hsu, and M. Zhao, 2012: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys., 50, RG3005, https://doi.org/10.1029/2012RG000388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, E. D., and J. J. Griffin, 1964: Sedimentation rates and mineralogy in the South Atlantic. J. Geophys. Res., 69, 42934309, https://doi.org/10.1029/JZ069i020p04293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groß, S., V. Freudenthaler, K. Schepanski, C. Toledano, A. Schäfler, A. Ansmann, and B. Weinzierl, 2015: Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements. Atmos. Chem. Phys., 15, 11 06711 080, https://doi.org/10.5194/acp-15-11067-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groß, S., J. Gasteiger, V. Freudenthaler, T. Müller, D. Sauer, C. Toledano, and A. Ansmann, 2016: Saharan dust contribution to the Caribbean summertime boundary layer—A lidar study during SALTRACE. Atmos. Chem. Phys., 16, 11 53511 546, https://doi.org/10.5194/acp-16-11535-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grogan, D. F. P., and C. D. Thorncroft, 2019: The characteristics of African easterly waves coupled to Saharan mineral dust aerosols. Quart. J. Roy. Meteor. Soc., 145, 11301146, https://doi.org/10.1002/qj.3483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarig, M., and et al. , 2017: Dry versus wet marine particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength lidar measurements during SALTRACE. Atmos. Chem. Phys., 17, 14 19914 217, https://doi.org/10.5194/acp-17-14199-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hand, J. L., W. H. White, K. A. Gebhart, N. P. Hyslop, T. E. Gill, and B. A. Schichtel, 2016: Earlier onset of the spring fine dust season in the southwestern United States. Geophys. Res. Lett., 43, 40014009, https://doi.org/10.1002/2016GL068519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, J. Z., 1972: The BOMEX Sea-Air Interaction program: Background and results to date. NOAA Tech. Memo. ERL BOMAP- 9, 34 pp.

  • Hooper, J., and S. Marx, 2018: A global doubling of dust emissions during the Anthropocene? Global Planet. Change, 169, 7091, https://doi.org/10.1016/j.gloplacha.2018.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huneeus, N., and et al. , 2011: Global dust model intercomparison in AeroCom phase 1. Atmos. Chem. Phys., 11, 77817816, https://doi.org/10.5194/acp-11-7781-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

  • Jaenicke, R., 2012: Die Erfindung der Luftchemie—Christian Junge. 100 Jahre Kaiser-Wilhelm-/Max-Planck-Institut für Chemie (Otto-Hahn-Institut), H. Kant and C. Reinhardt, Eds., Max Planck Institute, 187202.

  • Jickells, T., and C. M. Moore, 2015: The importance of atmospheric deposition for ocean productivity. Annu. Rev. Ecol. Evol. Syst., 46, 481501, https://doi.org/10.1146/annurev-ecolsys-112414-054118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junge, C. E., 1956: Recent investigations in air chemistry. Tellus, 8, 127139, https://doi.org/10.3402/tellusa.v8i2.8971.

  • Junge, C. E., 1963: Air Chemistry and Radioactivity. Academic Press, 382 pp.

  • Junge, C. E., 1972: Our knowledge of the physico-chemistry of aerosols in the undisturbed marine environment. J. Geophys. Res., 77, 51835200, https://doi.org/10.1029/JC077i027p05183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and A. T. N. Jiménez, 2021: Tropical Atlantic dust and the zonal circulation. Theor. Appl. Climatol., 143, 901913, https://doi.org/10.1007/s00704-020-03461-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, R. A., 2015: Satellites and satellite remote sensing. Encyclopedia of Atmospheric Sciences, 2nd ed. G. R. North, Ed., Elsevier, 5156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kandler, K., K. Schneiders, M. Ebert, M. Hartmann, S. Weinbruch, M. Prass, and C. Pöhlker, 2018: Composition and mixing state of atmospheric aerosols determined by electron microscopy: Method development and application to aged Saharan dust deposition in the Caribbean boundary layer. Atmos. Chem. Phys., 18, 13 42913 455, https://doi.org/10.5194/acp-18-13429-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and et al. , 1999: Validation of the Saharan dust plume conceptual model using lidar, Meteosat, and ECMWF data. Bull. Amer. Meteor. Soc., 80, 10451076, https://doi.org/10.1175/1520-0477(1999)080<1045:VOTSDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and M. C. Todd, 2012: Mineral dust aerosols over the Sahara: Meteorological controls on emission and transport and implications for modeling. Rev. Geophys., 50, RG1007, https://doi.org/10.1029/2011RG000362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and J.-B. W. Stuut, 2014: Mineral Dust: A Key Player in the Earth System. Springer, 509 pp.

  • Kok, J. F., and et al. , 2021: Contribution of the world's main dust source regions to the global cycle of desert dust. Atmos. Chem. Phys., 21, 81698193, https://doi.org/10.5194/acp-21-8169-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuciauskas, A. P., P. Xian, E. J. Hyer, M. I. Oyola, and J. R. Campbell, 2018: Supporting weather forecasters in predicting and monitoring Saharan air layer dust events as they impact the greater Caribbean. Bull. Amer. Meteor. Soc., 99, 259268, https://doi.org/10.1175/BAMS-D-16-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuettner, J. P., and J. Holland, 1969: The BOMEX project. Bull. Amer. Meteor. Soc., 50, 394403, https://doi.org/10.1175/1520-0477-50.6.394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machta, L., and H. F. Lucas, 1962: Radon in the upper atmosphere. Science, 135, 296299, https://doi.org/10.1126/science.135.3500.296.

  • Mbourou, G. N. T., J. J. Bertrand, and S. E. Nicholson, 1997: The diurnal and seasonal cycles of wind-borne dust over Africa north of the equator. J. Appl. Meteor., 36, 868882, https://doi.org/10.1175/1520-0450(1997)036<0868:TDASCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., D. F. P. Grogan, and S.-H. Chen, 2019: Saharan dust transport during the incipient growth phase of African easterly waves. Geosciences, 9, 388, https://doi.org/10.3390/geosciences9090388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2013: The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteor., 2013, 453521, https://doi.org/10.1155/2013/453521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okin, G., D. Gillette, and J. Herrick, 2006: Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J. Arid Environ., 65, 253275, https://doi.org/10.1016/j.jaridenv.2005.06.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkin, D., and W. Hunter, 1959: Cosmic dust in the atmosphere. Nature, 183, 732734, https://doi.org/10.1038/183732a0.

  • Parkin, D., A. Delany, and A. C. Delany, 1967: A search for airborne cosmic dust on Barbados. Geochim. Cosmochim. Acta, 31, 13111320, https://doi.org/10.1016/S0016-7037(67)80017-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plane, J. M., 2012: Cosmic dust in the Earth’s atmosphere. Chem. Soc. Rev., 41, 65076518, https://doi.org/10.1039/c2cs35132c.

  • Prospero, J. M., 1968: Atmospheric dust studies on Barbados. Bull. Amer. Meteor. Soc., 49, 645652, https://doi.org/10.1175/1520-0477-49.6.645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., 1999: Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality. J. Geophys. Res., 104, 15 91715 927, https://doi.org/10.1029/1999JD900072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and E. Bonatti, 1969: Continental dust in atmosphere of the eastern equatorial Pacific. J. Geophys. Res., 74, 33623371, https://doi.org/10.1029/JC074i013p03362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and T. N. Carlson, 1970: Radon-222 in the North Atlantic trade winds: Its relationship to dust transport from Africa. Science, 167, 974977, https://doi.org/10.1126/science.167.3920.974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and T. N. Carlson, 1972: Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic Ocean. J. Geophys. Res., 77, 52555265, https://doi.org/10.1029/JC077i027p05255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and R. T. Nees, 1977: Dust concentration in the atmosphere of the equatorial North Atlantic: Possible relationship to the Sahelian drought. Science, 196, 11961198, https://doi.org/10.1126/science.196.4295.1196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and R. T. Nees, 1986: Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds. Nature, 320, 735738, https://doi.org/10.1038/320735a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and P. J. Lamb, 2003: African droughts and dust transport to the Caribbean: Climate change implications. Science, 302, 10241027, https://doi.org/10.1126/science.1089915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and O. L. Mayol-Bracero, 2013: Understanding the transport and impact of African dust on the Caribbean Basin. Bull. Amer. Meteor. Soc., 94, 13291337, https://doi.org/10.1175/BAMS-D-12-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., E. Bonatti, C. Schubert, and T. N. Carlson, 1970: Dust in the Caribbean atmosphere traced to an African dust storm. Earth Planet. Sci. Lett., 9, 287293, https://doi.org/10.1016/0012-821X(70)90039-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., R. A. Glaccum, and R. T. Nees, 1981: Atmospheric transport of soil dust from Africa to South America. Nature, 289, 570572, https://doi.org/10.1038/289570a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., I. Olmez, and M. Ames, 2001: Al and Fe in PM 2.5 and PM 10 suspended particles in south-central Florida: The impact of the long range transport of African mineral dust. Water Air Soil Pollut., 125, 291317, https://doi.org/10.1023/A:1005277214288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, 2002: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40, 1002, https://doi.org/10.1029/2000RG000095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., E. Blades, G. Mathison, and R. Naidu, 2005: Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia, 21, 119, https://doi.org/10.1007/s10453-004-5872-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., E. Blades, R. Naidu, G. Mathison, H. Thani, and M. C. Lavoie, 2008: Relationship between African dust carried in the Atlantic trade winds and surges in pediatric asthma attendances in the Caribbean. Int. J. Biometeor., 52, 823832, https://doi.org/10.1007/s00484-008-0176-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., F.-X. Collard, J. Molinié, and A. Jeannot, 2014: Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality. Global Biogeochem. Cycles, 28, 757773, https://doi.org/10.1002/2013GB004802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., A. E. Barkley, C. J. Gaston, A. Gatineau, A. Campos y Sansano, and K. Panechou, 2020: Characterizing and quantifying African dust transport and deposition to South America: Implications for the phosphorus budget in the Amazon basin. Global Biogeochem. Cycles, 34, e2020GB006536, https://doi.org/10.1029/2020GB006536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, B., and Q. Jin, 2021: A record-breaking trans-Atlantic African dust plume associated with atmospheric circulation extremes in June 2020. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-21-0014.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Querol, X., and et al. , 2019: Monitoring the impact of desert dust outbreaks for air quality for health studies. Environ. Int., 130, 104867, https://doi.org/10.1016/j.envint.2019.05.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, P. K., D. B. Collins, V. H. Grassian, K. A. Prather, and T. S. Bates, 2015: Chemistry and related properties of freshly emitted sea spray aerosol. Chem. Rev., 115, 43834399, https://doi.org/10.1021/cr500713g.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ravi, S., and et al. , 2011: Aeolian processes and the biosphere. Rev. Geophys., 49, RG3001, https://doi.org/10.1029/2010RG000328.

  • Reed, K. A., J. T. Bacmeister, J. J. A. Huff, X. Wu, S. C. Bates, and N. A. Rosenbloom, 2019: Exploring the impact of dust on North Atlantic hurricanes in a high-resolution climate model. Geophys. Res. Lett., 46, 11051112, https://doi.org/10.1029/2018GL080642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, J. S., and et al. , 2003: Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE). J. Geophys. Res., 108, 8586, https://doi.org/10.1029/2002JD002493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, C. H., and D. J. Nemeth, 1991: Hurricane-borne African locusts (Schistocerca gregaria) on the Windward Islands. GeoJournal, 23, 349357, https://doi.org/10.1007/BF00193608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridley, D. A., C. L. Heald, and J. M. Prospero, 2014: What controls the recent changes in African mineral dust aerosol across the Atlantic? Atmos. Chem. Phys., 14, 57355747, https://doi.org/10.5194/acp-14-5735-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, O. E., C. B. Lange, R. Swap, and G. Wefer, 1999: Eolian-transported freshwater diatoms and phytoliths across the equatorial Atlantic record: Temporal changes in Saharan dust transport patterns. J. Geophys. Res., 104, 32113222, https://doi.org/10.1029/1998JC900070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenberg, J., and P. J. Burt, 1999: Windborne displacements of desert locusts from Africa to the Caribbean and South America. Aerobiologia, 15, 167175, https://doi.org/10.1023/A:1007529617032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salter, M. E., and et al. , 2016: Calcium enrichment in sea spray aerosol particles. Geophys. Res. Lett., 43, 82778285, https://doi.org/10.1002/2016GL070275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Y., and et al. , 2011: Dust cycle: An emerging core theme in Earth system science. Aeolian Res., 2, 181204, https://doi.org/10.1016/j.aeolia.2011.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and et al. , 2016: The Barbados Cloud Observatory: Anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull. Amer. Meteor. Soc., 97, 787801, https://doi.org/10.1175/BAMS-D-14-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stong, C. L., 1961: An amateur investigates the origin of Venezuela’s peculiar fog: The calina. Sci. Amer., 205, 172183, https://doi.org/10.1038/scientificamerican1061-172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, J. D. O., G. A. Vecchi, and P. Ginoux, 2018: The climatological effect of Saharan dust on global tropical cyclones in a fully coupled GCM. J. Geophys. Res. Atmos., 123, 55385559, https://doi.org/10.1029/2017JD027808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swap, R., M. Garstang, S. Greco, R. Talbot, and P. Kållberg, 1992: Saharan dust in the Amazon basin. Tellus, 44B, 133149, https://doi.org/10.3402/tellusb.v44i2.15434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, Z., S. A. Braun, J. J. Shi, M. Chin, D. Kim, T. Matsui, and C. D. Peters-Lidard, 2018: Microphysics and radiation effect of dust on Saharan air layer: An HS3 case study. Mon. Wea. Rev., 146, 18131835, https://doi.org/10.1175/MWR-D-17-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, S., and D. E. Brownlee, 1991: Cosmic spherules in the geologic record. Meteoritics, 26, 203211, https://doi.org/10.1111/j.1945-5100.1991.tb01040.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uthe, E. E., and W. B. Johnson, 1971: Lidar observations of the lower tropospheric aerosol structure during BOMEX. SRI Project Final Rep. 7929, 128 pp.

    • Search Google Scholar
    • Export Citation
  • Valle-Díaz, C. J., and et al. , 2016: Impact of long-range transported African dust on cloud water chemistry at a tropical montane cloud forest in northeastern Puerto Rico. Aerosol Air Qual. Res., 16, 653664, https://doi.org/10.4209/aaqr.2015.05.0320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, N. P., and C. Pierre, 2018: Quantifying anthropogenic dust emissions. Earth’s Future, 6, 286295, https://doi.org/10.1002/2017EF000766.

  • Weinzierl, B., and et al. , 2017: The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment: Overview and selected highlights. Bull. Amer. Meteor. Soc., 98, 14271451, https://doi.org/10.1175/BAMS-D-15-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C., Z. Lin, and X. Liu, 2020: The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models. Atmos. Chem. Phys., 20, 10 40110 425, https://doi.org/10.5194/acp-20-10401-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xian, P., P. J. Klotzbach, J. P. Dunion, M. A. Janiga, J. S. Reid, P. R. Colarco, and Z. Kipling, 2020: Revisiting the relationship between Atlantic dust and tropical cyclone activity using aerosol optical depth reanalyses: 2003–2018. Atmos. Chem. Phys., 20, 15 35715 378, https://doi.org/10.5194/acp-20-15357-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., and et al. , 2015a: Quantification of trans-Atlantic dust transport from seven-year (2007–2013) record of CALIPSO lidar measurements. Remote Sens. Environ., 159, 232249, https://doi.org/10.1016/j.rse.2014.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., and et al. , 2015b: The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys. Res. Lett., 42, 19841991, https://doi.org/10.1002/2015GL063040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., and et al. , 2019: Estimates of African dust deposition along the trans-Atlantic transit using the decadelong record of aerosol measurements from CALIOP, MODIS, MISR, and IASI. J. Geophys. Res. Atmos., 124, 79757996, https://doi.org/10.1029/2019JD030574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., and et al. , 2020: Disproving the Bodélé depression as the primary source of dust fertilizing the Amazon rainforest. Geophys. Res. Lett., 47, e2020GL088020, https://doi.org/10.1029/2020GL088020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zamora, L. M., J. M. Prospero, D. A. Hansell, and J. M. Trapp, 2013: Atmospheric P deposition to the subtropical North Atlantic: Sources, properties, and relationship to N deposition. J. Geophys. Res. Atmos., 118, 15461562, https://doi.org/10.1002/jgrd.50187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Zhao, D. Tong, G. Wu, M. Dan, and B. Teng, 2016: A systematic review of global desert dust and associated human health effects. Atmosphere, 7, 158, https://doi.org/10.3390/atmos7120158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and et al. , 2009: The Saharan air layer and the fate of African easterly waves: NASA’s AMMA field study of tropical cyclogenesis. Bull. Amer. Meteor. Soc., 90, 11371156, https://doi.org/10.1175/2009BAMS2728.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and et al. , 2019: Is summer African dust arriving earlier to Barbados? The updated long-term in situ dust mass concentration time series from Ragged Point, Barbados, and Miami, Florida. Bull. Amer. Meteor. Soc., 100, 1981–1986, https://doi.org/10.1175/BAMS-D-18-0083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuloaga, G., 1966: La calina y el viento salante: Bol. Acad. Cienc. Fis., Mat. Nat., 26, 101114.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 644 644 434
PDF Downloads 453 453 317

The Discovery of African Dust Transport to the Western Hemisphere and the Saharan Air Layer: A History

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 2 Eldorado Springs, Colorado
  • | 3 The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

There is great interest in wind-borne mineral dust because of the role that dust plays in climate by modulating solar radiation and cloud properties. Today, much research focuses on North Africa because it is Earth’s largest and most persistently active dust source. Moreover, this region is expected to be greatly impacted by climate change, which would affect dust emission rates. Interest in dust was stimulated over 50 years ago when it was discovered that African dust was frequently transported across the Atlantic in great quantities. Here we report on the initial discovery of African dust in the Caribbean Basin. We show that there were three independent “first” discoveries of African dust in the 1950s through the 1960s. In each case, the discoverers were not seeking dust but, rather, they had other research objectives. The meteorological context of African dust transport was first elucidated in 1969 with the characterization of the Saharan air layer (SAL) and its role in effecting the efficient transport of African dust over great distances to the Western Hemisphere. The link between dust transport and African climate was established in the 1970s and 1980s when dust transport to the Caribbean increased greatly following the onset of severe drought in the Sahel. Here we chronicle these events and show how they contributed to our current state of knowledge.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joseph M. Prospero, jprospero@miami.edu

Abstract

There is great interest in wind-borne mineral dust because of the role that dust plays in climate by modulating solar radiation and cloud properties. Today, much research focuses on North Africa because it is Earth’s largest and most persistently active dust source. Moreover, this region is expected to be greatly impacted by climate change, which would affect dust emission rates. Interest in dust was stimulated over 50 years ago when it was discovered that African dust was frequently transported across the Atlantic in great quantities. Here we report on the initial discovery of African dust in the Caribbean Basin. We show that there were three independent “first” discoveries of African dust in the 1950s through the 1960s. In each case, the discoverers were not seeking dust but, rather, they had other research objectives. The meteorological context of African dust transport was first elucidated in 1969 with the characterization of the Saharan air layer (SAL) and its role in effecting the efficient transport of African dust over great distances to the Western Hemisphere. The link between dust transport and African climate was established in the 1970s and 1980s when dust transport to the Caribbean increased greatly following the onset of severe drought in the Sahel. Here we chronicle these events and show how they contributed to our current state of knowledge.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joseph M. Prospero, jprospero@miami.edu

Supplementary Materials

    • Supplemental Materials (PDF 18.5 MB)
Save