• Chen, S., J. Huang, Y. Qian, J. Ge, and J. Su, 2014: Effects of aerosols on autumn precipitation over mid-eastern China. J. Trop. Meteor., 20, 242250.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and et al. , 2017a: Emission, transport and radiative effects of mineral dust from Taklimakan and Gobi Deserts: Comparison of measurements and model results. Atmos. Chem. Phys., 17, 24012421, https://doi.org/10.5194/acp-17-2401-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., J. Huang, J. Li, R. Jia, N. Jiang, L. Kang, X. Ma, and T. Xie, 2017b: Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci. China Earth Sci., 60, 13381355, https://doi.org/10.1007/s11430-016-9051-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eguchi, K., I. Uno, K. Yumimoto, T. Takemura, A. Shimizu, N. Sugimoto, and Z. Liu, 2009: Trans-Pacific dust transport: Integrated analysis of NASA/CALIPSO and a global aerosol transport model. Atmos. Chem. Phys., 9, 31373145, https://doi.org/10.5194/acp-9-3137-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fa, K., Y. Zhang, B. Wu, S. Qin, Z. Liu, and W. She, 2016: Patterns and possible mechanisms of soil CO2 uptake in sandy soil. Sci. Total Environ., 544, 587594, https://doi.org/10.1016/j.scitotenv.2015.11.163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Filonchyk, M., V. Hurynovich, H. Yan, and S. Yang, 2020: Atmospheric pollution assessment near potential source of natural aerosols in the south Gobi Desert region, China. GISci. Remote Sens., 57, 227244, https://doi.org/10.1080/15481603.2020.1715591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, J., J. Huang, C. Xu, Y. Qi, and H. Liu, 2014: Characteristics of Taklimakan dust emission and distribution: A satellite and reanalysis field perspective. J. Geophys. Res. Atmos., 119, 11 77211 783, https://doi.org/10.1002/2014JD022280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, S., X. Zhang, T. Zhao, I. G. McKendry, D. A. Jaffe, and N. Lu, 2003: Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation. J. Geophys. Res., 108, 4262, https://doi.org/10.1029/2002JD002633.

    • Search Google Scholar
    • Export Citation
  • Han, W., L. Yu, Z. Lai, D. Madsen, and S. Yang, 2014: The earliest well-dated archeological site in the hyper-arid Tarim basin and its implications for prehistoric human migration and climatic change. Quat. Res., 82, 6672, https://doi.org/10.1016/j.yqres.2014.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Y., X. Fang, L. Song, Q. Zhang, and S. Yang, 2005: A study of atmospheric circulation and dust storm causes of formation in the Tarim basin—The restructured wind field by shapes of dune and observed prevailing wind (in Chinese). Chin. J. Atmos. Sci., 29, 627635.

    • Search Google Scholar
    • Export Citation
  • Hastings, S. J., W. C. Oechel, and A. Muhlia-Melo, 2005: Diurnal, seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (sarcocaulescent) in Baja California, Mexico. Global Change Biol., 11, 927939, https://doi.org/10.1111/j.1365-2486.2005.00951.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., and et al. , 2007: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett., 34, L18805, https://doi.org/10.1029/2007GL029938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., P. Minnis, B. Chen, Z. Huang, Z. Liu, Q. Zhao, H. Yi, and J. K. Ayers, 2008: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res., 113, D23212, https://doi.org/10.1029/2008JD010620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., T. Wang, W. Wang, Z. Li, and H. Yan, 2014: Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos., 119, 11 39811 416, https://doi.org/10.1002/2014JD021796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., and et al. , 2017: Dryland climate change recent progress and challenges. Rev. Geophys., 55, 719778, https://doi.org/10.1002/2016RG000550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., Q. Yan, and C. Zhang, 2018: Spatial–temporal distribution characteristics of PM2.5 in China in 2016. J. Geovisualization Spat. Anal., 2, 12, https://doi.org/10.1007/s41651-018-0019-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huo, W., Q. He, X. Yang, X. Liu, G. Ding, and Y. Cheng, 2011: The research on grain size characteristic of desert in north of China (in Chinese). Res. Soil Water Conserv., 18, 611.

    • Search Google Scholar
    • Export Citation
  • Li, H., X. Wu, M. Ali, W. Huo, X. Yang, F. Yang, Q. He, and Y. Liu, 2016: Estimating surface broadband emissivity of the Taklimakan Desert with FTIR and MODIS data (in Chinese). Guangpuxue Yu Guangpu Fenxi, 36, 24142419.

    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Wang, R. A. Houghton, and L. Tang, 2015: Hidden carbon sink beneath desert. Geophys. Res. Lett., 42, 58805887, https://doi.org/10.1002/2015GL064222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., 2016: Observation, parameterization and climate simulation of dust emission processes (in Chinese). M.S. thesis, School of Atmospheric Physics, Nanjing University of Information Science and Technology, 51 pp.

    • Search Google Scholar
    • Export Citation
  • Liu, J., Y. Zheng, Z. Li, C. Flynn, E. J. Welton, and M. Cribb, 2011: Transport, vertical structure and radiative properties of dust events in southeast China determined from ground and space sensors. Atmos. Environ., 45, 64696480, https://doi.org/10.1016/j.atmosenv.2011.04.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., L. Li, and Z. An, 2001: Tibetan Plateau uplift and drying in Eurasian interior and Northern Africa (in Chinese). Quat. Sci., 21, 114122.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Q. He, H. Zhang, and M. Ali, 2012: Improving the CoLM in Taklimakan Desert hinterland with accurate key parameters and an appropriate parameterization scheme. Adv. Atmos. Sci., 29, 381390, https://doi.org/10.1007/s00376-011-1068-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Q. Zhu, J. Huang, S. Hua, and R. Jia, 2019: Impact of dust-polluted convective clouds over the Tibetan Plateau on downstream precipitation. Atmos. Environ., 209, 6777, https://doi.org/10.1016/j.atmosenv.2019.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Y. Li, J. Huang, Q. Zhu, and S. Wang, 2020a: Attribution of the Tibetan Plateau to northern drought. Natl. Sci. Rev., 7, 489492, https://doi.org/10.1093/nsr/nwz191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Q. Zhu, S. Hua, K. Alam, T. Dai, and Y. Cheng, 2020b: Tibetan Plateau driven impact of Taklimakan dust on northern rainfall. Atmos. Environ., 234, 117583, https://doi.org/10.1016/j.atmosenv.2020.117583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., Z. Wang, B. A. Stevenson, X. Zheng, and Y. Li, 2013: An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils. Sci. Rep., 3, 2025, https://doi.org/10.1038/srep02025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., R. Liu, L. Tang, Z. Lan, and Y. Li, 2014: A downward CO2 flux seems to have nowhere to go. Biogeosciences, 11, 62516262, https://doi.org/10.5194/bg-11-6251-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., S. Kang, L. Zhu, B. Xu, L. Tian, and T. Yao, 2008: Tibetan Observation and Research Platform: Atmosphere–land interaction over a heterogeneous landscape. Bull. Amer. Meteor. Soc., 89, 14871492.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., and et al. , 2017: Monitoring and modeling the Tibetan Plateau’s climate system and its impact on East Asia. Sci. Rep., 7, 44574, https://doi.org/10.1038/srep44574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., and et al. , 2020: A long-term ( 2005–2016 ) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau. Earth Syst. Sci. Data, 12, 29372957, https://doi.org/10.5194/essd-12-2937-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and A. J. Broccoli, 1990: Mountains and arid climates of middle latitudes. Science, 247, 192195, https://doi.org/10.1126/science.247.4939.192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., D. J. Parker, C. M. Grams, B. T. Johnson, W. Grey, and A. N. Ross, 2008: Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara. Atmos. Chem. Phys., 8, 69796993, https://doi.org/10.5194/acp-8-6979-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, L., and et al. , 2019: Modeling study on three-dimensional distribution of dust aerosols during a dust storm over the Tarim basin, northwest China. Atmos. Res., 218, 285295, https://doi.org/10.1016/j.atmosres.2018.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Y., and et al. , 2011: Dust cycle: An emerging core theme in Earth system science. Aeolian Res., 2, 181204, https://doi.org/10.1016/j.aeolia.2011.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, R., 2008: Have desert researchers discovered a hidden loop in the carbon cycle? Science, 320, 14091410, https://doi.org/10.1126/science.320.5882.1409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., H. Ming, W. Huo, H. Xu, J. Li, and X. Li, 2017: Detecting sand-dust storms using a wind-profiling radar. J. Arid Land, 9, 753762, https://doi.org/10.1007/s40333-017-0031-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., H. Ming, Z. Ruan, L. Gao, and D. Yang, 2018: Quantitative detection of mass concentration of sand-dust storms via wind-profiling radar and analysis of Z-M relationship. Theor. Appl. Climatol., 131, 927935, https://doi.org/10.1007/s00704-016-2012-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., J. Wang, Z. Zhou, and K. Shang, 2005: Regional characteristics of three kinds of dust storm events in China. Atmos. Environ., 39, 509520, https://doi.org/10.1016/j.atmosenv.2004.09.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and et al. , 2016: Analysis of land surface parameters and turbulence characteristics over the Tibetan Plateau and surrounding region. J. Geophys. Res. Atmos., 121, 95409560, https://doi.org/10.1002/2016JD025401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wohlfahrt, G., L. Fenstermaker, and J. Arnone, 2008: Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Global Change Biol., 14, 14751487, https://doi.org/10.1111/j.1365-2486.2008.01593.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xinjiang Bureau of Statistics, 2017: Xinjiang Statistical Yearbook 2016 (in Chinese). China Statistics Press, 21 pp.

  • Xu, X., T. Zhao, C. Lu, and X. Shi, 2014: Characteristics of the water cycle in the atmosphere over the Tibetan Plateau (in Chinese). Acta Meteor. Sin., 72, 10791095.

    • Search Google Scholar
    • Export Citation
  • Yang, F., X. Yang, W. Huo, M. Ali, X. Zheng, C. Zhou, and Q. He, 2017a: A continuously weighing, high frequency sand trap: Wind tunnel and field evaluations. Geomorphology, 293, 8492, https://doi.org/10.1016/j.geomorph.2017.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., M. Ali, X. Zheng, Q. He, X. Yang, W. Huo, F. Liang, and S. Wang, 2017b: Diurnal dynamics of soil respiration and the influencing factors for three land-cover types in the hinterland of the Taklimakan Desert, China. J. Arid Land, 9, 568579, https://doi.org/10.1007/s40333-017-0060-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., and et al. , 2020a: Taklimakan desert carbon-sink decreases under climate change. Sci. Bull., 65, 431433, https://doi.org/10.1016/j.scib.2019.12.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., and et al. , 2020b: Impact of differences in soil temperature on the desert carbon sink. Geoderma, 379, 114636, https://doi.org/10.1016/j.geoderma.2020.114636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., and et al. , 2007: Initial CEOP-based review of the prediction skill of operational general circulation models and land surface models. J. Meteor. Soc. Japan, 85A, 99116, https://doi.org/10.2151/jmsj.85A.99.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., 2019: Observation and parameterization on dust emission over the Taklimakan Desert (in Chinese). Ph.D. thesis, School of Applied Meteorology, Nanjing University of Information Science and Technology, 77 pp.

    • Search Google Scholar
    • Export Citation
  • Yang, X., S. Shen, F. Yang, Q. He, M. Ali, W. Huo, and X. Liu, 2016a: Spatial and temporal variations of blowing dust events in the Taklimakan Desert. Theor. Appl. Climatol., 125, 669677, https://doi.org/10.1007/s00704-015-1537-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., F. Yang, X. Liu, W. Huo, M. Ali, and Q. Zhang, 2016b: Comparison of horizontal dust fluxes simulated with two dust emission schemes based on field experiments in Xinjiang, China. Theor. Appl. Climatol., 126, 223231, https://doi.org/10.1007/s00704-015-1573-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., F. Yang, C. Zhou, M. Alia, W. Huo, and Q. He, 2020: Improved parameterization for effect of soil moisture on threshold friction velocity for saltation activity based on observations in the Taklimakan Desert. Geoderma, 369, 114322, https://doi.org/10.1016/j.geoderma.2020.114322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, D., and Y. Gao, 1979: The Meteorology of Qinghai-Xizang Plateau (in Chinese). Science Press, 278 pp.

  • Zhang, Q., and S. Wang, 2008: A study on atmospheric boundary layer structure on a clear day in the arid region in northwest China (in Chinese). Acta Meteor. Sin., 66, 599608.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., S. Gong, T. Zhao, R. Arimoto, Y. Wang, and Z. Zhou, 2003: Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett., 30, 2272, https://doi.org/10.1029/2003GL018206.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3 3 0
Full Text Views 218 218 61
PDF Downloads 134 134 69

Desert Environment and Climate Observation Network over the Taklimakan Desert

View More View Less
  • 1 Institute of Desert Meteorology/Taklimakan Desert Meteorology Field Experiment Station, China Meteorological Administration, Urumqi, China
  • | 2 Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, China
  • | 3 Institute of Desert Meteorology/Taklimakan Desert Meteorology Field Experiment Station, China Meteorological Administration, Urumqi, China
  • | 4 Department of Atmospheric Science, School of Physics, Peking University, Beijing, China
  • | 5 Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, China
  • | 6 Institute of Desert Meteorology/Taklimakan Desert Meteorology Field Experiment Station, China Meteorological Administration, Urumqi, China
  • | 7 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 8 Institute of Desert Meteorology/Taklimakan Desert Meteorology Field Experiment Station, China Meteorological Administration, Urumqi, China
  • | 9 Beijing Truwel Instruments, Inc., Beijing, China
  • | 10 Tazhong Meteorological Bureau, Qiemo, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

As the second-largest shifting sand desert worldwide, the Taklimakan Desert (TD) represents the typical aeolian landforms in arid regions as an important source of global dust aerosols. It directly affects the ecological environment and human health across East Asia. Thus, establishing a comprehensive environment and climate observation network for field research in the TD region is essential to improve our understanding of the desert meteorology and environment, assess its impact, mitigate potential environmental issues, and promote sustainable development. With a nearly 20-yr effort under the extremely harsh conditions of the TD, the Desert Environment and Climate Observation Network (DECON) has been established completely covering the TD region. The core of DECON is the Tazhong station in the hinterland of the TD. Moreover, the network also includes 4 satellite stations located along the edge of the TD for synergistic observations, and 18 automatic weather stations interspersed between them. Thus, DECON marks a new chapter of environmental and meteorological observation capabilities over the TD, including dust storms, dust emission and transport mechanisms, desert land–atmosphere interactions, desert boundary layer structure, ground calibration for remote sensing monitoring, and desert carbon sinks. In addition, DECON promotes cooperation and communication within the research community in the field of desert environments and climate, which promotes a better understanding of the status and role of desert ecosystems. Finally, DECON is expected to provide the basic support necessary for coordinated environmental and meteorological monitoring and mitigation, joint construction of ecologically friendly communities, and sustainable development of central Asia.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Huang, hjp@lzu.edu.cn

Abstract

As the second-largest shifting sand desert worldwide, the Taklimakan Desert (TD) represents the typical aeolian landforms in arid regions as an important source of global dust aerosols. It directly affects the ecological environment and human health across East Asia. Thus, establishing a comprehensive environment and climate observation network for field research in the TD region is essential to improve our understanding of the desert meteorology and environment, assess its impact, mitigate potential environmental issues, and promote sustainable development. With a nearly 20-yr effort under the extremely harsh conditions of the TD, the Desert Environment and Climate Observation Network (DECON) has been established completely covering the TD region. The core of DECON is the Tazhong station in the hinterland of the TD. Moreover, the network also includes 4 satellite stations located along the edge of the TD for synergistic observations, and 18 automatic weather stations interspersed between them. Thus, DECON marks a new chapter of environmental and meteorological observation capabilities over the TD, including dust storms, dust emission and transport mechanisms, desert land–atmosphere interactions, desert boundary layer structure, ground calibration for remote sensing monitoring, and desert carbon sinks. In addition, DECON promotes cooperation and communication within the research community in the field of desert environments and climate, which promotes a better understanding of the status and role of desert ecosystems. Finally, DECON is expected to provide the basic support necessary for coordinated environmental and meteorological monitoring and mitigation, joint construction of ecologically friendly communities, and sustainable development of central Asia.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Huang, hjp@lzu.edu.cn
Save