• Azarderakhsh, M., S. Prakash, Y. Zhao, and A. AghaKouchak, 2020: Satellite-based analysis of extreme land surface temperatures and diurnal variability across the hottest place on Earth. IEEE Geosci. Remote Sens. Lett., 17, 20252029, https://doi.org/10.1109/LGRS.2019.2962055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arizona State University, 2020: World Meteorological Organization’s World Weather & Climate Extremes Archive. Accessed 8 January 2020, https://wmo.asu.edu/content/mapviewer.

    • Search Google Scholar
    • Export Citation
  • Benz, S. A., S. J. Davis, and J. Burney, 2021: Drivers and projections of global surface temperature anomalies at sub-city scale. OSF Preprints, https://doi.org/10.31219/osf.io/a8rfx.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, https://doi.org/10.1126/science.1155121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and et al. , 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coll, C., V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, 2005: Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sens. Environ., 97, 288300, https://doi.org/10.1016/j.rse.2005.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coll, C., Z. Wan, and J. M. Galve, 2009: Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product. J. Geophys. Res., 114, D20102, https://doi.org/10.1029/2009JD012038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crameri, F., 2018: Scientific colour maps: Perceptually uniform and colour-vision deficiency friendly. Zenodo, https://doi.org/10.5281/zenodo.1243862.

    • Search Google Scholar
    • Export Citation
  • Crameri, F., G. E. Shephard, and P. J. Heron, 2020: The misuse of colour in science communication. Nat. Commun., 11, 5444, https://doi.org/10.1038/s41467-020-19160-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinerstein, E., and et al. , 2017: An ecoregion-based approach to protecting half the terrestrial realm. BioScience, 67, 534545, https://doi.org/10.1093/biosci/bix014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, S. B., Z. L. Li, H. Wu, P. Leng, M. Gao, and C. Wang, 2018: Radiance-based validation of land surface temperature products derived from collection 6 MODIS thermal infrared data. Int. J. Appl. Earth Obs. Geoinf., 70, 8492, https://doi.org/10.1016/j.jag.2018.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, S. B., and et al. , 2019: Validation of collection 6 MODIS land surface temperature product using in situ measurements. Remote Sens. Environ., 225, 1629, https://doi.org/10.1016/j.rse.2019.02.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and C. Schär, 2008: Future changes in daily summer temperature variability: Driving processes and role for temperature extremes. Climate Dyn ., 33, 917935, https://doi.org/10.1007/s00382-008-0473-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García, F. C., E. Bestion, R. Warfield, and G. Yvon-Durocher, 2018: Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc. Natl. Acad. Sci. USA, 115, 10 98910 994, https://doi.org/10.1073/pnas.1805518115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibbard, S., K. Caldeira, G. Bala, T. J. Phillips, and M. Wickett, 2005: Climate effects of global land cover change. Geophys. Res. Lett., 32, L23705, https://doi.org/10.1029/2005GL024550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giglio, L., W. Schroeder, and C. O. Justice, 2016: The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ., 178, 3141, https://doi.org/10.1016/j.rse.2016.02.054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, E. J., 2016: An in situ-based analysis of the relationship between land surface “skin” and screen-level air temperatures. J. Geophys. Res. Atmos., 121, 88018819, https://doi.org/10.1002/2016JD025318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, 2017: Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ., 202, 1827, https://doi.org/10.1016/j.rse.2017.06.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, T. P., and et al. , 2018: Global warming transforms coral reef assemblages. Nature, 556, 492496, https://doi.org/10.1038/s41586-018-0041-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iknayan, K. J., and S. R. Beissinger, 2018: Collapse of a desert bird community over the past century driven by climate change. Proc. Natl. Acad. Sci. USA, 115, 85978602, https://doi.org/10.1073/pnas.1805123115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2018: Global Warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. V. Masson-Delmotte et al., Eds., IPCC, 616 pp., www.ipcc.ch/sr15/.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., S.-P. Xie, Y. Kosaka, and X. Li, 2018: Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat. Commun., 9, 1724, https://doi.org/10.1038/s41467-018-04040-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., 2003: Modern global climate change. Science, 302, 17191723, https://doi.org/10.1126/science.1090228.

  • Kodra, E., K. Steinhaeuser, and A. R. Ganguly, 2011: Persisting cold extremes under 21st-century warming scenarios. Geophys. Res. Lett., 38, L08705, https://doi.org/10.1029/2011GL047103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kretschmer, M., D. Coumou, L. Agel, M. Barlow, E. Tziperman, and J. Cohen, 2018: More-persistent weak stratospheric polar vortex states linked to cold extremes. Bull. Amer. Meteor. Soc., 99, 4960, https://doi.org/10.1175/BAMS-D-16-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., G. A. Schmidt, D. Rind, and R. A. Ruedy, 2010: Atmospheric CO2: Principal control knob governing Earth’s temperature. Science, 330, 356359, https://doi.org/10.1126/science.1190653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., M. Zhao, S. Motesharrei, Q. Mu, E. Kalnay, and S. Li, 2015: Local cooling and warming effects of forests based on satellite observations. Nat. Commun., 6, 6603, https://doi.org/10.1038/ncomms7603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.-L., B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, 2013: Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ., 131, 1437, https://doi.org/10.1016/j.rse.2012.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., A. P. Ballantyne, and L. A. Cooper, 2019: Biophysical feedback of global forest fires on surface temperature. Nat. Commun., 10, 214, https://doi.org/10.1038/s41467-018-08237-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., X. Chen, J. Overland, I. Simmonds, Y. Wu, and P. Zhang, 2019: Weakened potential vorticity barrier linked to recent winter arctic sea ice loss and midlatitude cold extremes. J. Climate, 32, 42354261, https://doi.org/10.1175/JCLI-D-18-0449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mildrexler, D. J., M. Zhao, and S. W. Running, 2011a: A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res. Biogeosci., 116, G03025, https://doi.org/10.1029/2010JG001486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mildrexler, D. J., M. Zhao, and S. W. Running, 2011b: Satellite finds highest land skin temperatures on Earth. Bull. Amer. Meteor. Soc., 92, 855860, https://doi.org/10.1175/2011BAMS3067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mildrexler, D. J., M. Zhao, W. B. Cohen, S. W. Running, X. P. Song, and M. O. Jones, 2018: Thermal anomalies detect critical global land surface changes. J. Appl. Meteor. Climatol., 57, 391411, https://doi.org/10.1175/JAMC-D-17-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., A. J. Teuling, C. C. van Heerwaarden, and J. Vilà-Guerau de Arellano, 2014: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci., 7, 345349, https://doi.org/10.1038/ngeo2141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munich RE, 2019: NatCatSERVICE analysis tool. Accessed 17 October 2019, www.munichre.com/en/risks.html.

  • Nemani, R., and S. Running, 1997: Land cover characterization using multitemporal red, near-IR, and thermal-IR data from NOAA/AVHRR. Ecol. Appl., 7, 7990, https://doi.org/10.1890/1051-0761(1997)007[0079:LCCUMR]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, S., S. Fu, W. Cao, and X. Jia, 2020: Comparison of monthly air and land surface temperature extremes simulated using CMIP5 and CMIP6 versions of the Beijing Climate Center climate model. Theor. Appl. Climatol., 140, 487502, https://doi.org/10.1007/s00704-020-03090-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oudin Åström, D., B. Forsberg, K. L. Ebi, and J. Rocklöv, 2013: Attributing mortality from extreme temperatures to climate change in Stockholm, Sweden. Nat. Climate Change, 3, 10501054, https://doi.org/10.1038/nclimate2022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paaijmans, K. P., S. Blanford, A. S. Bell, J. I. Blanford, A. F. Read, and M. B. Thomas, 2010: Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl. Acad. Sci. USA, 107, 15 13515 139, https://doi.org/10.1073/pnas.1006422107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., 2020: Arctic lower-tropospheric warm and cold extremes: Horizontal and vertical transport, diabatic processes, and linkage to synoptic circulation features. J. Climate, 33, 9931016, https://doi.org/10.1175/JCLI-D-19-0638.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., and et al. , 2013: Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501, 8892, https://doi.org/10.1038/nature12434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S. S., and et al. , 2014: Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. USA, 111, 29152919, https://doi.org/10.1073/pnas.1315126111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, J., 2005: Who is sensitive to extremes of temperature? A case-only analysis. Epidemiology, 16, 6772, https://doi.org/10.1097/01.ede.0000147114.25957.71.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, https://doi.org/10.1038/nature05095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharifnezhadazizi, Z., H. Norouzi, S. Prakash, C. Beale, and R. Khanbilvardi, 2019: A global analysis of land surface temperature diurnal cycle using MODIS observations. J. Appl. Meteor. Climatol., 58, 12791291, https://doi.org/10.1175/JAMC-D-18-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sunday, J. M., A. E. Bates, M. R. Kearney, R. K. Colwell, N. K. Dulvy, J. T. Longino, and R. B. Huey, 2014: Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl. Acad. Sci. USA, 111, 56105615, https://doi.org/10.1073/pnas.1316145111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, https://doi.org/10.1088/1748-9326/8/1/014036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyndall, J., 1863: XXVII. On radiation through the earth’s atmosphere. London Edinburgh Dublin Philos. Mag. J. Sci., 25, 200206, https://doi.org/10.1080/14786446308643443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, Z., 2008: New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens. Environ., 112, 5974, https://doi.org/10.1016/j.rse.2006.06.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, Z., 2013: Collection-6 MODIS land surface temperature products users’ guide. University of California, Santa Barbara, 33 pp., https://lpdaac.usgs.gov/documents/118/MOD11_User_Guide_V6.pdf.

    • Search Google Scholar
    • Export Citation
  • Wan, Z., 2014: New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ., 140, 3645, https://doi.org/10.1016/j.rse.2013.08.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, Z., and Z.-L. Li, 2008: Radiance-based validation of the V5 MODIS land-surface temperature product. Int. J. Remote Sens., 29, 53735395, https://doi.org/10.1080/01431160802036565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, Z., Y. Zhang, Q. Zhang, and Z.-L. Li, 2004: Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens., 25, 261274, https://doi.org/10.1080/0143116031000116417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, Z., S. Hook, and G. Hulley, 2015: MYD11A1 MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN Grid V006. NASA EOSDIS Land Processes DAAC, accessed 8 January 2020, https://doi.org/10.5067/MODIS/MYD11A1.006.

    • Search Google Scholar
    • Export Citation
  • Wang, K., and S. Liang, 2009: Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites. Remote Sens. Environ., 113, 15561565, https://doi.org/10.1016/j.rse.2009.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., Z. Wan, P. Wang, M. Sparrow, J. Liu, and S. Haginoya, 2007: Evaluation and improvement of the MODIS land surface temperature/emissivity products using ground-based measurements at a semi-desert site on the western Tibetan Plateau. Int. J. Remote Sens., 28, 25492565, https://doi.org/10.1080/01431160600702665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, W., and et al. , 2018: Decreases in global beer supply due to extreme drought and heat. Nat. Plants, 4, 964973, https://doi.org/10.1038/s41477-018-0263-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeaman, S., and et al. , 2016: Convergent local adaptation to climate in distantly related conifers. Science, 353, 14311433, https://doi.org/10.1126/science.aaf7812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., and K. Wang, 2016: Land surface temperature over global deserts: Means, variability, and trends. J. Geophys. Res. Atmos., 121, 14 34414 357, https://doi.org/10.1002/2016JD025410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., H. Chen, and Y. Dai, 2015: Stronger warming amplification over drier ecoregions observed since 1979. Environ. Res. Lett., 10, 064012, https://doi.org/10.1088/1748-9326/10/6/064012.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 19 19 0
Full Text Views 619 619 554
PDF Downloads 523 523 469

Global Patterns of Hottest, Coldest, and Extreme Diurnal Variability on Earth

View More View Less
  • 1 Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California
  • | 2 New York City College of Technology, City University of New York, Brooklyn, New York
  • | 3 School of Computer Science and Engineering, Fairleigh Dickinson University, Teaneck, New Jersey
  • | 4 Department of Civil and Environmental Engineering, and Department of Earth System Science, University of California, Irvine, Irvine, California
© Get Permissions Rent on DeepDyve
Restricted access

ABSTRACT

Most previous studies of extreme temperatures have primarily focused on atmospheric temperatures. Using 18 years of the latest version of the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) data, we globally investigate the spatial patterns of hot and cold extremes as well as diurnal temperature range (DTR). We show that the world’s highest LST of 80.8°C, observed in the Lut Desert in Iran and the Sonoran Desert in Mexico, is over 10°C above the previous global record of 70.7°C observed in 2005. The coldest place on Earth is Antarctica with the record low temperature of −110.9°C. The world’s maximum DTR of 81.8°C is observed in a desert environment in China. We see strong latitudinal patterns in hot and cold extremes as well as DTR. Biomes worldwide are faced with different levels of temperature extremes and DTR: we observe the highest zonal average maximum LST of 61.1° ± 5.3°C in the deserts and xeric shrublands; the lowest zonal average minimum LST of −66.6° ± 14.8°C in the tundra; and the highest zonal average maximum DTR of 43.5° ± 9.9°C in the montane grasslands and shrublands. This global exploration of extreme LST and DTR across different biomes sheds light on the type of extremes different ecosystems are faced with.

Corresponding author: Yunxia Zhao, yunxiaz1@uci.edu

ABSTRACT

Most previous studies of extreme temperatures have primarily focused on atmospheric temperatures. Using 18 years of the latest version of the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) data, we globally investigate the spatial patterns of hot and cold extremes as well as diurnal temperature range (DTR). We show that the world’s highest LST of 80.8°C, observed in the Lut Desert in Iran and the Sonoran Desert in Mexico, is over 10°C above the previous global record of 70.7°C observed in 2005. The coldest place on Earth is Antarctica with the record low temperature of −110.9°C. The world’s maximum DTR of 81.8°C is observed in a desert environment in China. We see strong latitudinal patterns in hot and cold extremes as well as DTR. Biomes worldwide are faced with different levels of temperature extremes and DTR: we observe the highest zonal average maximum LST of 61.1° ± 5.3°C in the deserts and xeric shrublands; the lowest zonal average minimum LST of −66.6° ± 14.8°C in the tundra; and the highest zonal average maximum DTR of 43.5° ± 9.9°C in the montane grasslands and shrublands. This global exploration of extreme LST and DTR across different biomes sheds light on the type of extremes different ecosystems are faced with.

Corresponding author: Yunxia Zhao, yunxiaz1@uci.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.15 MB)
Save