• Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, Y., and Coauthors, 2014: Evaluation of CMIP5 Earth system models in reproducing leaf area index and vegetation cover over the Tibetan Plateau. J. Meteor. Res., 28, 10411060, https://doi.org/10.1007/s13351-014-4023-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baret, F., and Coauthors, 2007: LAI, FAPAR and fCOVER CYCLOPES global products derived from VEGETATION. Part I: Principles of the algorithm. Remote Sens. Environ., 110, 275286, https://doi.org/10.1016/j.rse.2007.02.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Improved estimations of gross primary production using satellite-derived photosynthetically active radiation. J. Geophys. Res. Biogeosci., 119, 2013JG002456, https://doi.org/10.1002/2013JG002456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camacho, F., J. Cemicharo, R. Lacaze, F. Baret, and M. Weiss, 2013: GEOV1: LAI, FAPAR essential climate variables and fCOVER global time series capitalizing over existing products. Part II: Validation and intercomparison with reference products. Remote Sens. Environ., 137, 310329, https://doi.org/10.1016/j.rse.2013.02.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, C., and S. Liang, 2019: Evaluation of ten machine learning methods for estimating terrestrial evapotranspiration from remote sensing. Int. J. Appl. Earth Obs. Geoinf., 78, 8692, https://doi.org/10.1016/j.jag.2019.01.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., S. Liang, Y. Cao, T. He, and D. Wang, 2015: Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Sci. Rep., 5, 16820, https://doi.org/10.1038/srep16820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., S. Liang, and D. Wang, 2016a: Satellite observed changes in the Northern Hemisphere snow cover phenology and the associated radiative forcing and feedback between 1982 and 2013. Environ. Res. Lett., 11, 084002, https://doi.org/10.1088/1748-9326/11/8/084002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., S. Liang, D. Wang, and T. He, 2016b: Distribution, attribution, and radiative forcing of snow cover changes over China from 1982 to 2013. Climatic Change, 137, 363377, https://doi.org/10.1007/s10584-016-1688-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., S. Liang, and D. Wang, 2017: Sensitivity of summer drying to spring snow-albedo feedback throughout the Northern Hemisphere from satellite observations. IEEE Geosci. Remote Sens. Lett., 14, 23452349, https://doi.org/10.1109/LGRS.2017.2764543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., D. Long, S. Liang, L. He, C. Zeng, X. Hao, and Y. Hong, 2018: Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data. Remote Sens. Environ., 215, 284299, https://doi.org/10.1016/j.rse.2018.06.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, J., and S. Liang, 2013: Estimating global land surface broadband thermal-infrared emissivity using Advanced Very High Resolution Radiometer optical data. Int. J. Digital Earth, 6, 3449, https://doi.org/10.1080/17538947.2013.783129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, J., and S. Liang, 2014: Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product. J. Geophys. Res. Atmos., 119, 614634, https://doi.org/10.1002/2013JD020689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, J., and S. Liang, 2016: Global estimates for high-spatial-resolution clear-sky land surface upwelling longwave radiation from MODIS data. IEEE Trans. Geosci. Remote Sens., 54, 41154129, https://doi.org/10.1109/TGRS.2016.2537650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, J., S. Liang, Y. Yao, and X. Zhang, 2013: Estimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation. IEEE Geosci. Remote Sens. Lett., 10, 401405, https://doi.org/10.1109/LGRS.2012.2206367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, J., S. Liang, Y. Yao, B. Ren, L. Shi, and H. Liu, 2014: A comparative study of three land surface broadband emissivity datasets from satellite data. Remote Sens., 6, 111134, https://doi.org/10.3390/rs6010111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, J., S. Liang, W. Verhoef, L. Shi, and Q. Liu, 2016: Estimating the hemispherical broadband longwave emissivity of global vegetated surfaces using a radiative transfer model. IEEE Trans. Geosci. Remote Sens., 54, 905917, https://doi.org/10.1109/TGRS.2015.2469535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, J., S. Liang, and W. Wang, 2017a: Surface downward longwave radiation. Earth’s Energy Budget, S. Liang, Ed., Vol. 5, Comprehensive Remote Sensing, Elsevier, 196216.

    • Search Google Scholar
    • Export Citation
  • Cheng, J., X. Cheng, S. Liang, R. Niclòs, A. Nie, and Q. Liu, 2017b: A lookup table-based method for estimating sea surface hemispherical broadband emissivity values (8–13.5 mm). Remote Sens ., 9, 245, https://doi.org/10.3390/RS9030245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, J., F. Yang, and Y. Guo, 2019: A comparative study of bulk parameterization schemes for estimating cloudy-sky surface downward longwave radiation. Remote Sens ., 11, 528, https://doi.org/10.3390/rs11050528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, J., S. Liang, and J. Shi, 2020: Impact of air temperature inversion on the clear-sky surface downward longwave radiation estimation. IEEE Trans. Geosci. Remote Sens., 58, 47964802, https://doi.org/10.1109/TGRS.2020.2967432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1983: Land surface processes and climate-surface albedos and energy balance. Advances in Geophysics, Vol. 25, Academic Press, 305353, https://doi.org/10.1016/S0065-2687(08)60176-4.

    • Search Google Scholar
    • Export Citation
  • Dong, L., J. Hu, S. Tang, and M. Min, 2013: Field validation of GLASS land surface broadband emissivity database using pseudo-invariant sand dune sites in north of China. Int. J. Digital Earth, 6, 96112, https://doi.org/10.1080/17538947.2013.822573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Driemel, A., and Coauthors, 2018: Baseline Surface Radiation Network (BSRN): Structure and data description (1992-2017). Earth Syst. Sci. Data, 10, 14911501, https://doi.org/10.5194/essd-10-1491-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Druel, A., and Coauthors, 2017: Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1. 0). Geosci. Model Dev., 10, 46934722, https://doi.org/10.5194/gmd-10-4693-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Y., Q. Liu, Y. Qu, and S. Liang, 2016: Estimation of the ocean water albedo from remote sensing and meteorological reanalysis data. IEEE Trans. Geosci. Remote Sens., 54, 850868, https://doi.org/10.1109/TGRS.2015.2468054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fensholt, R., I. Sandholt, and M. S. Rasmussen, 2004: Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ., 91, 490507, https://doi.org/10.1016/j.rse.2004.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., K. P. Tu, and D. D. Baldocchi, 2008: Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ., 112, 901919, https://doi.org/10.1016/j.rse.2007.06.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forman, B., and S. Margulis, 2009: High-resolution satellite-based cloud-coupled estimates of total downwelling surface radiation for hydrologic modelling applications. Hydrol. Earth Syst. Sci., 13, 969986, https://doi.org/10.5194/hess-13-969-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GCOS, 2016: The Global Observing System for Climate: Implementation needs. GCOS Rep. GCOS- 200, 342 pp.

  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimberteau, M., and Coauthors, 2018: ORCHIDEE-MICT (v8. 4.1), a land surface model for the high latitudes: Model description and validation. Geosci. Model Dev., 11, 121163, https://doi.org/10.5194/gmd-11-121-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., J. Cheng, and S. Liang, 2019: Comprehensive assessment of parameterization methods for estimating clear-sky surface downward longwave radiation. Theor. Appl. Climatol., 135, 10451058, https://doi.org/10.1007/S00704-018-2423-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, F., and Coauthors, 2015: Effects of climate change on phenology and primary productivity in the desert steppe of Inner Mongolia. J. Arid Land, 7, 251263, https://doi.org/10.1007/s40333-014-0042-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, L., J. M. Chen, J. Pisek, C. B. Schaaf, and A. H. Strahler, 2012: Global clumping index map derived from the MODIS BRDF product. Remote Sens. Environ., 119, 118130, https://doi.org/10.1016/j.rse.2011.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, T., S. Liang, Y. Yu, Q. Liu, and F. Gao, 2013: Greenland surface albedo changes 1981-2012 from satellite observations. Environ. Res. Lett., 8, 044043, https://doi.org/10.1088/1748-9326/8/4/044043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, T., S. Liang, and D.-X. Song, 2014: Analysis of global land surface albedo climatology and spatial-temporal variation during 1981–2010 from multiple satellite products. J. Geophys. Res. Atmos., 119, 10 28110 298, https://doi.org/10.1002/2014JD021667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, L., W. Fan, H. Ren, S. Liu, Y. Cui, and P. Zhao, 2018: Spatiotemporal dynamics in vegetation GPP over the Great Khingan mountains using GLASS products from 1982 to 2015. Remote Sens ., 10, 488, https://doi.org/10.3390/rs10030488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., M. Hou, G. Jia, X. Zhang, R. Xu, and Y. He, 2015: Comparison of three different methods to identify fractional urban signals for improving climate modelling. Int. J. Remote Sens., 36, 32743292, https://doi.org/10.1080/01431161.2015.1042593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., G. Jia, C. Pohl, X. Zhang, and J. van Genderen, 2016: Assessing surface albedo change and its induced radiation budget under rapid urbanization with Landsat and GLASS data. Theor. Appl. Climatol., 123, 711722, https://doi.org/10.1007/s00704-015-1385-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H., C. Liu, X. Wang, G. S. Biging, Y. Chen, J. Yang, and P. Gong, 2017: Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data. ISPRS J. Photogramm. Remote Sens., 129, 189199, https://doi.org/10.1016/j.isprsjprs.2017.04.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. Gerber, T. Huang, and J. W. Lichstein, 2016: Evaluating the drought response of CMIP5 models using global gross primary productivity, leaf area, precipitation, and soil moisture data. Global Biogeochem. Cycles, 30, 18271846, https://doi.org/10.1002/2016GB005480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, A., S. Liang, B. Jiang, X. Zhang, and G. Wang, 2018: Comprehensive assessment of global surface net radiation products and uncertainty analysis. J. Geophys. Res. Atmos., 123, 19701989, https://doi.org/10.1002/2017JD027903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, K., and Coauthors, 2015: Global land surface fractional vegetation cover estimation using general regression neural networks from MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens., 53, 47874796, https://doi.org/10.1109/TGRS.2015.2409563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, K., and Coauthors, 2016: Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Remote Sens. Environ., 177, 184191, https://doi.org/10.1016/j.rse.2016.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, K., S. L. Liang, X. Q. Wei, Y. J. Yao, L. Q. Yang, X. T. Zhang, and D. Y. Liu, 2018: Validation of Global Land Surface Satellite (GLASS) fractional vegetation cover product from MODIS data in an agricultural region. Remote Sens. Lett., 9, 847856, https://doi.org/10.1080/2150704X.2018.1484958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, K., and Coauthors, 2019: Long-term Global Land Surface Satellite (GLASS) fractional vegetation cover product derived from MODIS and AVHRR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 508518, https://doi.org/10.1109/JSTARS.2018.2854293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, W., M. Liu, D. Wang, H. He, P. Shi, Y. Li, and Y. Wang, 2018: Uncertainty in simulating regional gross primary productivity from satellite-based models over northern China grassland. Ecol. Indic., 88, 134143, https://doi.org/10.1016/j.ecolind.2018.01.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, B., Y. Zhang, S. Liang, X. Zhang, and Z. Xiao, 2014: Surface daytime net radiation estimation using artificial neural networks. Remote Sens ., 6, 11 03111 050, https://doi.org/10.3390/rs61111031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, B., and Coauthors, 2015: Empirical estimation of daytime net radiation from shortwave radiation and ancillary information. Agric. For. Meteor., 211–212, 2336, https://doi.org/10.1016/j.agrformet.2015.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, B., and Coauthors, 2019: Validation of the surface daytime net radiation product from version 4.0 GLASS product suite. IEEE Geosci. Remote Sens. Lett., 16, 509513, https://doi.org/10.1109/LGRS.2018.2877625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiapaer, G., S. Liang, Q. X. Yi, and J. P. Liu, 2015: Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic., 58, 6476, https://doi.org/10.1016/j.ecolind.2015.05.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, M., and S. Liang, 2006: Improve land surface emissivity parameter for land surface models using global remote sensing observations. J. Climate, 19, 28672881, https://doi.org/10.1175/JCLI3720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanniah, K. D., J. Beringer, L. B. Hutley, N. J. Tapper, and X. Zhu, 2009: Evaluation of collections 4 and 5 of the MODIS gross primary productivity product and algorithm improvement at a tropical savanna site in northern Australia. Remote Sens. Environ., 113, 18081822, https://doi.org/10.1016/j.rse.2009.04.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., and Coauthors, 2018: The Grape Remote Sensing Atmospheric Profile and Evapotranspiration Experiment. Bull. Amer. Meteor. Soc., 99, 17911812, https://doi.org/10.1175/BAMS-D-16-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. Q., Y. H. Gao, D. L. Chen, Y. X. Zhang, and S. S. Li, 2018: Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades. Sci. Cold Arid Reg., 10, 482492, www.scar.ac.cn/EN/Y2018/V10/I6/482.

    • Search Google Scholar
    • Export Citation
  • Li, S., J. Weigand, and S. Ganguly, 2017: The potential for climate impacts from widespread deployment of utility-scale solar energy installations: An environmental remote sensing perspective. J Remote Sensing GIS, 6, 51963947, https://doi.org/10.4172/2469-4134.1000190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and Coauthors, 2013: Estimation of gross primary production over the terrestrial ecosystems in China. Ecol. Modell., 261–262, 8092, https://doi.org/10.1016/j.ecolmodel.2013.03.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X. L., H. Lu, L. Yu, and K. Yang, 2018: Comparison of the spatial characteristics of four remotely sensed leaf area index products over China: Direct validation and relative uncertainties. Remote Sens ., 10, 26, https://doi.org/10.3390/RS10010148.

    • Search Google Scholar
    • Export Citation
  • Li, Y., M. Zhao, S. Motesharrei, Q. Mu, E. Kalnay, and S. Li, 2015: Local cooling and warming effects of forests based on satellite observations. Nat. Commun., 6, 6603, https://doi.org/10.1038/ncomms7603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, S., and J. Wang, 2019: Advanced Remote Sensing: Terrestrial Information Extraction and Applications. 2nd ed. Elsevier, 985 pp.

  • Liang, S., T. Zheng, R. Liu, H. Fang, S. C. Tsay, and S. Running, 2006: Mapping incident photosynthetically active radiation (PAR) from MODIS data. J. Geophys. Res. Atmos., 111, D15208, https://doi.org/10.11029/12005JD006730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, S., X. Zhang, Z. Xiao, J. Cheng, Q. Liu, and X. Zhao, 2013a: Global Land Surface Satellite (GLASS) Products: Algorithms, Validation and Analysis. Springer, 171 pp.

    • Search Google Scholar
    • Export Citation
  • Liang, S., and Coauthors, 2013b: A long-term Global Land Surface Satellite (GLASS) dataset for environmental studies. Int. J. Digital Earth, 6, 533, https://doi.org/10.1080/17538947.2013.805262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, S., D. Wang, T. He, and Y. Yu, 2019: Remote sensing of Earth’s energy budget: Synthesis and review. Int. J. Digital Earth, 12, 737780, https://doi.org/10.1080/17538947.2019.1597189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, N., Q. Liu, L. Wang, S. Liang, J. Wen, Y. Qu, and S. Liu, 2013: A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data. Hydrol. Earth Syst. Sci., 17, 21212129, https://doi.org/10.5194/hess-17-2121-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., L. Hao, C. Pan, D. Zhou, Y. Liu, and G. Sun, 2017: Combined effects of climate and land management on watershed vegetation dynamics in an arid environment. Sci. Total Environ., 589, 7388, https://doi.org/10.1016/j.scitotenv.2017.02.210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., L. Wang, Y. Qu, N. Liu, S. Liu, H. Tang, and S. Liang, 2013: Preliminary evaluation of the long-term GLASS albedo product. Int. J. Digital Earth, 6, 6995, https://doi.org/10.1080/17538947.2013.804601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and Coauthors, 2016: Hydrological recovery in two large forested watersheds of southeastern China: The importance of watershed properties in determining hydrological responses to reforestation. Hydrol. Earth Syst. Sci., 20, 47474756, https://doi.org/10.5194/hess-20-4747-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., B.-H. Tang, G. Yan, Z.-L. Li, and S. Liang, 2019: Retrieval of global orbit drift corrected land surface temperature from long-term AVHRR data. Remote Sens ., 11, 2843, https://doi.org/10.3390/rs11232843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. B., and Coauthors, 2018: Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sens. Environ., 206, 174188, https://doi.org/10.1016/j.rse.2017.12.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., Q. Shao, and J. Liu, 2015: The performances of MODIS-GPP and-ET products in China and their sensitivity to input data (FPAR/LAI). Remote Sens ., 7, 135152, https://doi.org/10.3390/rs70100135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H., Q. Liu, S. Liang, and Z. Xiao, 2017a: Simultaneous estimation of leaf area index, fraction of absorbed photosynthetically active radiation and surface albedo from multiple-satellite data. IEEE Trans. Geosci. Remote Sens., 55, 43344354, https://doi.org/10.1109/TGRS.2017.2691542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H., S. Liang, Z. Xiao, and H. Shi, 2017b: Simultaneous inversion of multiple land surface parameters from MODIS optical–thermal observations. ISPRS J. Photogramm. Remote Sens., 128, 240254, https://doi.org/10.1016/j.isprsjprs.2017.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H., S. Liang, Z. Xiao, and D. Wang, 2018: Simultaneous estimation of multiple land surface parameters from VIIRS optical-thermal data. IEEE Geosci. Remote Sens. Lett., 15, 156160, https://doi.org/10.1109/LGRS.2017.2779040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., X. Yan, W. Dong, and J. Chou, 2015: Gross primary production of global forest ecosystems has been overestimated. Sci. Rep., 5, 10820, https://doi.org/10.1038/srep10820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., J. Zhou, F.-M. Göttsche, S. Liang, S. Wang, and M. Li, 2020: A global long-term (1981–2000) land surface temperature product for NOAA AVHRR. Earth Syst. Sci. Data, 12, 32473268, https://doi.org/10.5194/essd-12-3247-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, N., J. Szilagyi, Y. Zhang, and W. Liu, 2019: Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982–2012: Validations and spatiotemporal analyses. J. Geophys. Res. Atmos., 124, 43264351, https://doi.org/10.1029/2018JD029850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, R., and Coauthors, 2017: Assimilation of remotely-sensed leaf area index into a dynamic vegetation model for gross primary productivity estimation. Remote Sens ., 9, 188, https://doi.org/10.3390/rs9030188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, X., J. Cheng, and S. Liang, 2017: Estimating land surface temperature from Feng Yun-3C/MERSI data using a new land surface emissivity scheme. Remote Sens ., 9, 1247, https://doi.org/10.3390/rs9121247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, Q., M. Zhao, and S. W. Running, 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115, 17811800, https://doi.org/10.1016/j.rse.2011.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, X., S. Huang, H. Ren, G. Yan, W. Song, and G. Ruan, 2015: Validating GEOV1 fractional vegetation cover derived from coarse-resolution remote sensing images over croplands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 439446, https://doi.org/10.1109/JSTARS.2014.2342257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., and Coauthors, 2002: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ., 83, 214231, https://doi.org/10.1016/S0034-4257(02)00074-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NRC, 2004: Climate Data Records from Environmental Satellites: Interim Report. National Academies Press, 150 pp.

  • Pasquato, M., C. Medici, A. D. Friend, and F. Francés, 2015: Comparing two approaches for parsimonious vegetation modelling in semiarid regions using satellite data. Ecohydrology, 8, 10241036, https://doi.org/10.1002/eco.1559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., and Coauthors, 2015: Multi-scale validation strategy for satellite albedo products and its uncertainty analysis. Sci. China Earth Sci., 58, 573588, https://doi.org/10.1007/s11430-014-4997-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S. L., and Coauthors, 2015: Detection and attribution of vegetation greening trend in China over the last 30 years. Global Change Biol ., 21, 16011609, https://doi.org/10.1111/gcb.12795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, Y., Q. Liu, S. Liang, L. Wang, N. Liu, and S. Liu, 2014: Improved direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data. IEEE Trans. Geosci. Remote Sens., 52, 907919, https://doi.org/10.1109/TGRS.2013.2245670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, Y., S. Liang, Q. Liu, X. Li, Y. Feng, and S. Liu, 2016: Estimating Arctic sea-ice shortwave albedo from MODIS data. Remote Sens. Environ., 186, 3246, https://doi.org/10.1016/j.rse.2016.08.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, Y., and Coauthors, 2019: Estimating daily average surface air temperature using satellite land surface temperature and top-of-atmosphere radiation products over the Tibetan Plateau. Remote Sens. Environ., 234, 111462, https://doi.org/10.1016/j.rse.2019.111462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Restrepo-Coupe, N., and Coauthors, 2013: What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric. For. Meteor., 182–183, 128144, https://doi.org/10.1016/j.agrformet.2013.04.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, H., Z. Xiao, S. Liang, and X. Zhang, 2016: Consistent estimation of multiple parameters from MODIS top of atmosphere reflectance data using a coupled soil-canopy-atmosphere radiative transfer model. Remote Sens. Environ., 184, 4057, https://doi.org/10.1016/j.rse.2016.06.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, H., Z. Xiao, S. Liang, and H. Ma, 2017: A method for consistent estimation of multiple land surface parameters from MODIS top-of-atmosphere time series data. IEEE Trans. Geosci. Remote Sens., 55, 51585173, https://doi.org/10.1109/TGRS.2017.2702609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L., and Coauthors, 2018: Monitoring and validating spatially and temporally continuous daily evaporation and transpiration at river basin scale. Remote Sens. Environ., 219, 7288, https://doi.org/10.1016/j.rse.2018.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Z., S. Liang, D. Wang, Y. Zhou, and Y. Yu, 2018: Long-term record of top-of-atmosphere albedo over land generated from AVHRR data. Remote Sens. Environ., 211, 7188, https://doi.org/10.1016/j.rse.2018.03.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., D. Wendi, D. E. Kim, and S.-Y. Liong, 2016: Development and application of an integrated hydrological model for Singapore freshwater swamp forest. Procedia Eng ., 154, 10021009, https://doi.org/10.1016/j.proeng.2016.07.589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, H., K. Yu, O. Hagolle, K. Jiang, X. Geng, and Y. Zhao, 2013: A cloud detection method based on a time series of MODIS surface reflectance images. Int. J. Digital Earth, 6, 157171, https://doi.org/10.1080/17538947.2013.833313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tesemma, Z. K., Y. Wei, M. C. Peel, and A. W. Western, 2015: The effect of year-to-year variability of leaf area index on variable infiltration capacity model performance and simulation of runoff. Adv. Water Resour., 83, 310322, https://doi.org/10.1016/j.advwatres.2015.07.002.S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, X., and Coauthors, 2015: Simulation of forest evapotranspiration using time-series parameterization of the Surface Energy Balance System (SEBS) over the Qilian Mountains. Remote Sens ., 7, 15 82215 843, https://doi.org/10.3390/rs71215806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, X., and Coauthors, 2017: Modeling forest above-ground biomass dynamics using multi-source data and incorporated models: A case study over the Qilian Mountains. Agric. For. Meteor., 246, 114, https://doi.org/10.1016/j.agrformet.2017.05.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verma, M., and Coauthors, 2015: Improving the performance of remote sensing models for capturing intra- and inter-annual variations in daily GPP: An analysis using global FLUXNET tower data. Agric. For. Meteor., 214–215, 416429, https://doi.org/10.1016/j.agrformet.2015.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., and S. Liang, 2016: Estimating high-resolution top of atmosphere albedo from Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ., 178, 93103, https://doi.org/10.1016/j.rse.2016.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., and S. Liang, 2017: Estimating top-of-atmosphere daily reflected shortwave radiation flux over land from MODIS data. IEEE Trans. Geosci. Remote Sens., 55, 40224031, https://doi.org/10.1109/TGRS.2017.2686599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Coauthors, 2018: Sensitivity of biogenic volatile organic compound emissions to leaf area index and land cover in Beijing. Atmos. Chem. Phys., 18, 95839596, https://doi.org/10.5194/acp-18-9583-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Wang, H. Zhou, and Z. Xiao, 2017: Detecting forest disturbance in northeast China from GLASS LAI time series data using a dynamic model. Remote Sens ., 9, 1293, https://doi.org/10.3390/rs9121293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K. C., R. E. Dickinson, M. Wild, and S. Liang, 2010: Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development. J. Geophys. Res. Atmos., 115, D20112, https://doi.org/10.1029/2009JD013671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., H. Zhu, A. Lin, L. Zou, W. Qin, and Q. Du, 2017: Evaluation of the latest MODIS GPP products across multiple biomes using global eddy covariance flux data. Remote Sens ., 9, 418, https://doi.org/10.3390/rs9050418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., H. Zheng, X. Zhu, and G. Yu, 2015: Primary estimation of Chinese terrestrial carbon sequestration during 2001–2010. Sci. Bull., 60, 577590, https://doi.org/10.1007/s11434-015-0736-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, R., J. M. Chen, Z. Liu, and A. Arain, 2017: Evaluation of seasonal variations of remotely sensed leaf area index over five evergreen coniferous forests. ISPRS J. Photogramm. Remote Sens., 130, 187201, https://doi.org/10.1016/j.isprsjprs.2017.05.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., and Coauthors, 2014: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models. Climate Dyn ., 44, 33933429, https://doi.org/10.1007/S00382-014-2430-Z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., S. Liang, J. D. Wang, P. Chen, X. J. Yin, L. Q. Zhang, and J. L. Song, 2014: Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens., 52, 209223, https://doi.org/10.1109/TGRS.2013.2237780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., S. Liang, T. Wang, and Q. Liu, 2015a: Reconstruction of satellite-retrieved land-surface reflectance based on temporally-continuous vegetation Indices. Remote Sens ., 7, 98449864, https://doi.org/10.3390/rs70809844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., S. Liang, R. Sun, J. Wang, and B. Jiang, 2015b: Estimating the fraction of absorbed photosynthetically active radiation from the MODIS data based GLASS leaf area index product. Remote Sens. Environ., 171, 105117, https://doi.org/10.1016/j.rse.2015.10.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., S. Liang, J. Wang, D. Xie, J. Song, and R. Fensholt, 2015c: A framework for the consistent estimation of leaf area index, fraction of absorbed photosynthetically active radiation and surface albedo from MODIS time series data. IEEE Trans. Geosci. Remote Sens., 53, 31783197, https://doi.org/10.1109/TGRS.2014.2370071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., T. Wang, S. Liang, and R. Sun, 2016a: Estimating the fractional vegetation cover from GLASS leaf area index product. Remote Sens ., 8, 337, https://doi.org/10.3390/rs8040337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., S. Liang, T. Wang, and B. Jiang, 2016b: Retrieval of leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR) from VIIRS time-series data. Remote Sens ., 8, 351, https://doi.org/10.3390/rs8040351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., S. Liang, J. Wang, Y. Xiang, X. Zhao, and J. Song, 2016c: Long-time-series Global Land Surface Satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens., 54, 53015318, https://doi.org/10.1109/TGRS.2016.2560522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., S. Liang, and B. Jiang, 2017a: Evaluation of four long time-series global leaf area index products. Agric. For. Meteor., 246, 218230, https://doi.org/10.1016/j.agrformet.2017.06.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., S. Liang, X. Tian, K. Jia, Y. Yao, and B. Jiang, 2017b: Reconstruction of long-term temporally continuous NDVI and surface reflectance from AVHRR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 55515568, https://doi.org/10.1109/JSTARS.2017.2744979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., S. Liang, and R. Sun, 2018: Evaluation of three long time series for global fraction of absorbed photosynthetically active radiation (FAPAR) products. IEEE Trans. Geosci. Remote Sens., 56, 55095524, https://doi.org/10.1109/TGRS.2018.2818929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, B., and Coauthors, 2018: An integrated method for validating long-term leaf area index products using global networks of site-based measurements. Remote Sens. Environ., 209, 134151, https://doi.org/10.1016/j.rse.2018.02.049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., and Coauthors, 2013: Implications of ice storm damages on the water and carbon cycle of bamboo forests in southeastern China. Agric. For. Meteor., 177, 3545, https://doi.org/10.1016/j.agrformet.2013.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., K. Jia, S. Liang, J. Liu, and X. Wang, 2016: Comparison of four machine learning methods for generating the GLASS fractional vegetation cover product from MODIS data. Remote Sens ., 8, 682, https://doi.org/10.3390/rs8080682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., S. Liang, and Y. Zhang, 2020: A new method for generating a global forest aboveground biomass map from multiple high-level satellite products and ancillary information. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 13, 25872597, https://doi.org/10.1109/JSTARS.2020.2987951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., Y. Wang, X. Liu, H. Zhao, R. Shao, and G. Wang, 2020: Evaluation of the rescaled complementary principle in the estimation of evaporation on the Tibetan Plateau. Sci. Total Environ., 699, 134367, https://doi.org/10.1016/j.scitotenv.2019.134367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, Y., and Coauthors, 2013: MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm. Agric. For. Meteor., 171, 187202, https://doi.org/10.1016/j.agrformet.2012.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, Y., and Coauthors, 2014: Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations. J. Geophys. Res. Atmos., 119, 45214545, https://doi.org/10.1002/2013JD020864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, T., R. Sun, Z. Q. Xiao, Q. Zhang, J. M. Wang, and G. Liu, 2018: Generation of high resolution vegetation productivity from a downscaling method. Remote Sens ., 10, 1748, https://doi.org/10.3390/rs10111748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, W., and Coauthors, 2007: Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric. For. Meteor., 143, 189207, https://doi.org/10.1016/j.agrformet.2006.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, W., and Coauthors, 2010: Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ., 114, 14161431, https://doi.org/10.1016/j.rse.2010.01.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, W., and Coauthors, 2014: Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agric. For. Meteor., 192–193, 108120, https://doi.org/10.1016/j.agrformet.2014.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, W., and Coauthors, 2019: Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv., 5, eaax1396, https://doi.org/10.1126/SCIADV.AAX1396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Q., J. Cheng, and L. Dong, 2020: Assessment of the long-term high-spatial resolution Global Land Surface Satellite (GLASS) surface longwave radiation product using ground measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 13, 2032–2055, https://doi.org/10.1109/JSTARS.2020.2992472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., S. Liang, G. Zhou, H. Wu, and X. Zhao, 2014: Generating Global Land Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sens. Environ., 152, 318332, https://doi.org/10.1016/j.rse.2014.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and Coauthors, 2019: An operational approach for generating the global land surface downward shortwave radiation product from MODIS data. IEEE Trans. Geosci. Remote Sens., 57, 46364650, https://doi.org/10.1109/TGRS.2019.2891945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. Liang, 2014: Surface radiative forcing of forest disturbances over northeastern China. Environ. Res. Lett., 9, 024002, https://doi.org/10.1088/1748-9326/9/2/024002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. Liang, 2018: Impacts of land cover transitions on surface temperature in China based on satellite observations. Environ. Res. Lett., 13, 024010, https://doi.org/10.1088/1748-9326/aa9e93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., Z.-L. Yang, and T. J. Hoar, 2016: Global soil moisture estimation by assimilating AMSR-E brightness temperatures in a coupled CLM4–RTM–DART system. J. Hydrometeor., 17, 24312454, https://doi.org/10.1175/JHM-D-15-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, X., and Coauthors, 2013: The Global Land Surface Satellite (GLASS) remote sensing data processing system and products. Remote Sens ., 5, 24362450, https://doi.org/10.3390/rs5052436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., and Coauthors, 2020: Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data, 12, 27252746, https://doi.org/10.5194/essd-12-2725-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, J., S. Liang, J. Cheng, Y. Wang, and J. Ma, 2019: The GLASS land surface temperature product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 493507, https://doi.org/10.1109/JSTARS.2018.2870130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, H., A. Lin, L. Wang, Y. Xia, and L. Zou, 2016: Evaluation of MODIS gross primary production across multiple biomes in China using eddy covariance flux data. Remote Sens ., 8, 395, https://doi.org/10.3390/rs8050395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and Coauthors, 2016: Greening of the Earth and its drivers. Nat. Climate Change, 6, 791795, https://doi.org/10.1038/nclimate3004.

All Time Past Year Past 30 Days
Abstract Views 2 2 2
Full Text Views 108 108 108
PDF Downloads 101 101 101

The Global Land Surface Satellite (GLASS) Product Suite

View More View Less
  • 1 Department of Geographical Sciences, University of Maryland, College Park, College Park, Maryland
  • 2 State Key Laboratory of Remote Sensing Science, and Beijing Engineering Research Center for Global Land Remote Sensing Products, and Institute of Remote Sensing Science and Engineering, Faculty of Geographical Sciences, Beijing Normal University, Beijing, China
  • 3 State Key Laboratory of Remote Sensing Science, and Beijing Engineering Research Center for Global Land Remote Sensing Products, and College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
  • 4 State Key Laboratory of Remote Sensing Science, and Beijing Engineering Research Center for Global Land Remote Sensing Products, and Institute of Remote Sensing Science and Engineering, Faculty of Geographical Sciences, Beijing Normal University, Beijing, China
  • 5 School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
  • 6 State Key Laboratory of Remote Sensing Science, and Beijing Engineering Research Center for Global Land Remote Sensing Products, and Institute of Remote Sensing Science and Engineering, Faculty of Geographical Sciences, Beijing Normal University, Beijing, China
  • 7 School of Resources and Environment, Center for Information Geoscience, University of Electronic Science and Technology of China, Chengdu, China
© Get Permissions
Restricted access

Abstract:

The Global Land Surface Satellite (GLASS) product suite currently contains 12 products, including leaf area index, fraction of absorbed photosynthetically active radiation, fraction of green vegetation coverage, gross primary production, broadband albedo, broadband longwave emissivity, downward shortwave radiation and photosynthetically active radiation, land surface temperature, downward and upwelling thermal radiation, all-wave net radiation, and evapotranspiration. These products are generated from the Advanced Very High Resolution Radiometer and Moderate Resolution Imaging Spectroradiometer satellite data. Their unique features include long-term temporal coverage (many from 1981 to the present), high spatial resolutions of the surface radiation products (1 km and 0.05°), spatial continuities without missing pixels, and high quality and accuracy based on extensive validation using in situ measurements and intercomparisons with other existing satellite products. Moreover, the GLASS products are based on robust algorithms that have been published in peer-reviewed literature. Herein, we provide an overview of the algorithm development, product characteristics, and some preliminary applications of these products. We also describe the next steps, such as improving the existing GLASS products, generating more climate data records (CDRs), broadening product dissemination, and fostering their wider utilization. The GLASS products are freely available to the public.

Joint second coauthors, equally contributed to this paper.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shunlin Liang, sliang@umd.edu

Abstract:

The Global Land Surface Satellite (GLASS) product suite currently contains 12 products, including leaf area index, fraction of absorbed photosynthetically active radiation, fraction of green vegetation coverage, gross primary production, broadband albedo, broadband longwave emissivity, downward shortwave radiation and photosynthetically active radiation, land surface temperature, downward and upwelling thermal radiation, all-wave net radiation, and evapotranspiration. These products are generated from the Advanced Very High Resolution Radiometer and Moderate Resolution Imaging Spectroradiometer satellite data. Their unique features include long-term temporal coverage (many from 1981 to the present), high spatial resolutions of the surface radiation products (1 km and 0.05°), spatial continuities without missing pixels, and high quality and accuracy based on extensive validation using in situ measurements and intercomparisons with other existing satellite products. Moreover, the GLASS products are based on robust algorithms that have been published in peer-reviewed literature. Herein, we provide an overview of the algorithm development, product characteristics, and some preliminary applications of these products. We also describe the next steps, such as improving the existing GLASS products, generating more climate data records (CDRs), broadening product dissemination, and fostering their wider utilization. The GLASS products are freely available to the public.

Joint second coauthors, equally contributed to this paper.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shunlin Liang, sliang@umd.edu
Save