• Ali, F., N. Behbehani, N. Alomair, and A. Taher, 2019: Fatal and near-fatal thunderstorm asthma epidemic in a desert country. Ann. Thorac. Med., 14, 155160, https://doi.org/10.4103/atm.ATM_258_18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson-Frey, A. K., Y. P. Richardson, A. R. Dean, R. L. Thompson, and B. T. Smith, 2019: Characteristics of tornado events and warnings in the southeastern United States. Wea. Forecasting, 34, 10171034, https://doi.org/10.1175/WAF-D-18-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bannister, T., and Coauthors, 2020: Are convergence lines associated with high asthma presentation days? A case-control study in Melbourne, Australia. Sci. Total Environ., 737, 140263, https://doi.org/10.1016/j.scitotenv.2020.140263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, L. R., E. C. Gruntfest, M. H. Hayden, D. M. Schultz, and C. Benight, 2007: False alarms and close calls: A conceptual model of warning accuracy. Wea. Forecasting, 22, 11401147, https://doi.org/10.1175/WAF1031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beggs, P. J., J. M. Davies, A. Milic, S. G. Haberle, F. H. Johnston, P. J. Jones, C. H. Katelaris, and E. Newbigin, 2018: Australian Airborne Pollen and Spore Monitoring Network interim standard and protocols, version 2. Macquarie University and Queensland University of Technology Rep., 77 pp., www.allergy.org.au/images/stories/pospapers/Australian_Pollen_and_Spore_Monitoring_Interim_Standard_and_Protocols_v2_14092018.pdf.

    • Search Google Scholar
    • Export Citation
  • Bellomo, R., P. Gigliotti, A. Treloar, P. Holmes, C. Suphioglu, M. B. Singh, and R. B. Knox, 1992: Two consecutive thunderstorm associated epidemics of asthma in the city of Melbourne: The possible role of rye-grass pollen. Med. J. Aust., 156, 834837, https://doi.org/10.5694/j.1326-5377.1992.tb136994.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BoM, 2020: Severe thunderstorm warning services. Accessed 4 April 2020, www.bom.gov.au/weather-services/severe-weather-knowledge-centre/WarningsInformation_SW_STSW.shtml.

    • Search Google Scholar
    • Export Citation
  • Buters, J., and Coauthors, 2015: Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. J. Allergy Clin. Immunol., 136, P8795.E6, https://doi.org/10.1016/j.jaci.2015.01.049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buters, J., C. Antunes, A. Galveias, K. C. Bergmann, M. Thibaudon, C. Galán, C. Schmidt-Weber, and J. Oteros, 2018: Pollen and spore monitoring in the world. Clin. Transl. Allergy, 8, 9, https://doi.org/10.1186/s13601-018-0197-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, R. A., and D. M. Schultz, 2005: Contraction rate and its relationship to frontogenesis, the Lyapunov exponent, fluid trapping, and airstream boundaries. Mon. Wea. Rev., 133, 13531369, https://doi.org/10.1175/MWR2922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M., S. Weiss, J. Evans, D. Bright, J. Hart, P. Bothwell, S. Corfidi, and B. Johns, 2005: NOAA Hazardous Weather Testbed. NOAA Rep., 11 pp., www.nssl.noaa.gov/users/mcon/public_html/2005_summer_exp_plan.pdf.

    • Search Google Scholar
    • Export Citation
  • Crouzy, B., M. Stella, T. Konzelmann, B. Calpini, and B. Clot, 2016: All-optical automatic pollen identification: Towards an operational system. Atmos. Environ., 140, 202212, https://doi.org/10.1016/j.atmosenv.2016.05.062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CSU, 2017: CSU thunderstorm alert system helps asthmatics. Accessed 16 April 2020, https://news.csu.edu.au/local-news/wagga-wagga/csu-thunderstorm-alert-system-helps-asthmatics.

    • Search Google Scholar
    • Export Citation
  • Dabrera, G., V. Murray, J. Emberlin, J. G. Ayres, C. Collier, Y. Clewlow, and P. Sachon, 2013: Thunderstorm asthma: An overview of the evidence base and implications for public health advice. QJM Int. J. Med., 106, 207217, https://doi.org/10.1093/qjmed/hcs234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dales, R. E., S. Cakmak, S. Judek, T. Dann, F. Coates, J. R. Brook, and R. T. Burnett, 2003: The role of fungal spores in thunderstorm asthma. Chest, 123, 745750, https://doi.org/10.1378/chest.123.3.745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Amato, G., and Coauthors, 2016: Thunderstorm-related asthma: What happens and why. Clin. Exp. Allergy, 46, 390396, https://doi.org/10.1111/cea.12709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, J. M., B. Erbas, M. Simunovic, J. Al Kouba, A. Milic, and D. Fagan, 2017: Literature review on thunderstorm asthma and its implications for public health advice. Victoria State Government, accessed 16 April 2020, www2.health.vic.gov.au/public-health/environmental-health/climate-weather-and-public-health/thunderstorm-asthma/response.

    • Search Google Scholar
    • Export Citation
  • Deakin University, 2020: Deakin AIRwatch. Accessed 16 April 2020, www.deakin.edu.au/apps/sebe/airwatch/.

  • Devadas, R., and Coauthors, 2018: Dynamic ecological observations from satellites inform aerobiology of allergenic grass pollen. Sci. Total Environ., 633, 441451, https://doi.org/10.1016/j.scitotenv.2018.03.191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efstathiou, C., S. Isukapalli, and P. Georgopoulos, 2011: A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens. Atmos. Environ., 45, 22602276, https://doi.org/10.1016/j.atmosenv.2010.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emmerson, K. M., J. D. Silver, E. Newbigin, E. R. Lampugnani, C. Suphioglu, A. Wain, and E. Ebert, 2019: Development and evaluation of pollen source methodologies for the Victorian Grass Pollen Emissions Module VGPEM1.0. Geosci. Model Dev., 12, 21952214, https://doi.org/10.5194/gmd-12-2195-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emmerson, K. M., and Coauthors, 2021: Atmospheric modelling of grass pollen rupturing mechanisms for thunderstorm asthma prediction. PLOS ONE, in press.

    • Search Google Scholar
    • Export Citation
  • Erbas, B., and Coauthors, 2012: The role of seasonal grass pollen on childhood asthma emergency department presentations. Clin. Exp. Allergy, 42, 799805, https://doi.org/10.1111/j.1365-2222.2012.03995.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • European Committee for Standardization, 2015: Ambient air—Sampling and analysis of airborne pollen grains and fungal spores for allergy networks—Volumetric Hirst method. NSAI Doc. CEN/TS 16868:2015, 42 pp., https://infostore.saiglobal.com/preview/98704550283.pdf?sku=879320_SAIG_NSAI_NSAI_2089393.

    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., and A. H. Murphy, 1992: Equitable skill scores for categorical forecasts. Mon. Wea. Rev., 120, 361370, https://doi.org/10.1175/1520-0493(1992)120<0361:ESSFCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girgis, S. T., G. B. Marks, S. H. Downs, A. Kolbe, G. N. Car, and R. Paton, 2000: Thunderstorm-associated asthma in an inland town in south-eastern Australia. Who is at risk? Eur. Respir. J., 16, 38, https://doi.org/10.1034/j.1399-3003.2000.16a02.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grundstein, A., S. E. Sarnat, M. Klein, M. Shepherd, L. Naeher, T. Mote, and P. Tolbert, 2008: Thunderstorm associated asthma in Atlanta, Georgia. Thorax, 63, 659660, https://doi.org/10.1136/thx.2007.092882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grundstein, A., M. Shepherd, P. Miller, and S. E. Sarnat, 2017: The role of mesoscale-convective processes in explaining the 21 November 2016 epidemic thunderstorm asthma event in Melbourne, Australia. J. Appl. Meteor. Climatol., 56, 13371343, https://doi.org/10.1175/JAMC-D-17-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guest, C., 2017: The November 2016 epidemic thunderstorm asthma event: An assessment of the health impacts. DHHS Chief Health Officer Rep., 80 pp., www2.health.vic.gov.au/∼/media/Health/Files/Collections/Research and reports/T/thunderstorm-asthma-health-impact-2017-pdf.

    • Search Google Scholar
    • Export Citation
  • Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira, 2002: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83, 195213, https://doi.org/10.1016/S0034-4257(02)00096-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IGEM, 2017: Review of response to the thunderstorm asthma event of 21–22 November 2016. IGEM Final Rep., 105 pp., www.igem.vic.gov.au/sites/default/files/embridge_cache/emshare/original/public/2020/04/a9/411f6bd24/ReviewofemergencyresponsetoNovember2016thunderstormasthmaeventfinalreport.pdf.

    • Search Google Scholar
    • Export Citation
  • IGEM, 2018: Implementation of recommendations from the Review of response to the thunderstorm asthma event of 21–22 November 2016. IGEM Progress Rep., 92 pp., www.igem.vic.gov.au/sites/default/files/embridge_cache/emshare/original/public/2020/04/b7/386aa6ff7/IGEM%20Progress%20Report%20-%20Implementation%20of%20recommendations%20from%20the%20review%20of%20response%20to%202016%20thunderstorm%20asthma%20event.PDF.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, Eds., 2012: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. 2nd ed. John Wiley and Sons, 274 pp.

    • Search Google Scholar
    • Export Citation
  • Jones, P., E. Newbigin, E. R. Lampugnani, and K. Matley, 2017: Victorian Thunderstorm Asthma Pollen Surveillance (VICTAPS) network daily grass pollen count standard operating procedure. University of Melbourne Rep., 20 pp., https://portal.pollenforecast.com.au/static/submissionapp/docs/VICTAPS_SOP_2017.pdf.

    • Search Google Scholar
    • Export Citation
  • Knox, R. B., 1993: Grass pollen, thunderstorms and asthma. Clin. Exp. Allergy, 23, 354359, https://doi.org/10.1111/j.1365-2222.1993.tb00339.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornei, K., 2018: Australian state forecasts deadly thunderstorm asthma. Science, 359, 380, https://doi.org/10.1126/science.359.6374.380.

  • Lechner, P., A. Tupper, M. Guffanti, S. Loughlin, and T. Casadevall, 2017: Volcanic ash and aviation—The challenges of real-time, global communication of a natural hazard. Observing the Volcano World, et al., Eds., Springer, 5164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, G. B., J. R. Colquhoun, S. T. Girgis, M. Hjelmroos Koski, A. B. A. Treloar, P. Hansen, S. H. Downs, and N. G. Car, 2001: Thunderstorm outflows preceding epidemics of asthma during spring and summer. Thorax, 56, 468471, https://doi.org/10.1136/thorax.56.6.468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melbourne University, 2020: Melbourne pollen. Accessed 4 April 2020, www.melbournepollen.com.au.

  • Met Office, 2020: Pollen forecast. Accessed 4 April 2020, www.metoffice.gov.uk/public/weather/pollen-forecast.

  • NASA, 2020: MODIS vegetation index products (NDVI and EVI). Accessed 4 April 2020, https://modis.gsfc.nasa.gov/data/dataprod/mod13.php.

  • Newson, R., D. Strachan, E. Archibald, J. Emberlin, P. Hardaker, and C. Collier, 1998: Acute asthma epidemics, weather and pollen in England, 1987-1994. Eur. Respir. J., 11, 694701, https://doi.org/10.1136/THX.52.8.680.

    • Search Google Scholar
    • Export Citation
  • Ong, E. K., M. B. Singh, and R. B. Knox, 1995: Seasonal distribution of pollen in the atmosphere of Melbourne: An airborne pollen calendar. Aerobiologia, 11, 5155, https://doi.org/10.1007/BF02136145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulimood, T. B., J. M. Corden, C. Bryden, L. Sharples, and S. M. Nasser, 2007: Epidemic asthma and the role of the fungal mold Alternaria alternata. J. Allergy Clin. Immunol., 120, 610617, https://doi.org/10.1016/j.jaci.2007.04.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puri, K., and Coauthors, 2013: Implementation of the initial ACCESS numerical weather prediction system. Aust. Meteor. Oceanogr. J., 63, 265284, https://doi.org/10.22499/2.6302.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäppi, G. F., P. E. Taylor, J. Kenrick, I. A. Staff, and C. Suphioglu, 1998: Predicting the grass pollen count from meteorological data with regard to estimating the severity of hayfever symptoms in Melbourne (Australia). Aerobiologia, 14, 2937, https://doi.org/10.1007/BF02694592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siljamo, P., and Coauthors, 2013: A numerical model of birch pollen emission and dispersion in the atmosphere. Model evaluation and sensitivity analysis. Int. J. Biometeor., 57, 125136, https://doi.org/10.1007/s00484-012-0539-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sills, D. M., and P. I. Joe, 2019: From pioneers to practitioners: A short history of severe thunderstorm research and forecasting in Canada. Atmos.–Ocean, 57, 249261, https://doi.org/10.1080/07055900.2019.1673145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silver, J. D., M. F. Sutherland, F. H. Johnston, E. R. Lampugnani, M. A. McCarthy, S. J. Jacobs, A. B. Pezza, and E. J. Newbigin, 2018: Seasonal asthma in Melbourne, Australia, and some observations on the occurrence of thunderstorm asthma and its predictability. PLOS ONE, 13, e0194929, https://doi.org/10.1371/journal.pone.0194929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silver, J. D., K. Spriggs, S. Haberle, C. Katelaris, E. Newbigin, and E. R. Lampugnani, 2020: Using crowd-sourced allergic rhinitis symptom data to improve grass pollen forecasts and predict individual symptoms. Sci. Total Environ., 720, 137351, https://doi.org/10.1016/j.scitotenv.2020.137351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sofiev, M., and Coauthors, 2013: A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. Int. J. Biometeor., 57, 4558, https://doi.org/10.1007/s00484-012-0532-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spanos, P. A., 2018: Finding into death with inquest for Omar Jamil Moujalled. Court Reference COR 2016 5533, 61 pp., www.coronerscourt.vic.gov.au/sites/default/files/2018-12/OmarJamilMoujalled_553316.pdf.

    • Search Google Scholar
    • Export Citation
  • State of Victoria, 2017: Epidemic thunderstorm asthma forecast. State of Victoria, www2.health.vic.gov.au/public-health/environmental-health/climate-weather-and-public-health/thunderstorm-asthma/forecasting.

    • Search Google Scholar
    • Export Citation
  • Suphioglu, C., M. B. Singh, P. E. Taylor, R. Bellomo, P. Holmes, R. Puy, and R. B. Knox, 1992: Mechanism of grass pollen-induced asthma. Lancet, 339, 569572, https://doi.org/10.1016/0140-6736(92)90864-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tam, J., and W. K. Wong, 2017: Point verification and improved communication of the low-to-medium cloud cover forecasts. Meteor. Appl., 24, 466477, https://doi.org/10.1002/met.1645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thien, F., and Coauthors, 2018: The Melbourne epidemic thunderstorm asthma event 2016: An investigation of environmental triggers, effect on health services, and patient risk factors. Lancet Planet. Health, 2, e255e263, https://doi.org/10.1016/S2542-5196(18)30120-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tran, N. N., and Coauthors, 2020: Seasonal comparisons of Himawari-8 AHI and MODIS vegetation indices over latitudinal Australian grassland sites. Remote Sens ., 12, 24942515, https://doi.org/10.3390/rs12152494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venables, K. M., and Coauthors, 1997: Thunderstorm-related asthma—The epidemic of 24/25 June 1994. Clin. Exp. Allergy, 27, 725736, https://doi.org/10.1046/j.1365-2222.1997.790893.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visez, N., G. Chassard, N. Azarkan, O. Naas, H. Sénéchal, J. P. Sutra, P. Poncet, and M. Choël, 2015: Wind-induced mechanical rupture of birch pollen: Potential implications for allergen dispersal. J. Aerosol Sci., 89, 7784, https://doi.org/10.1016/j.jaerosci.2015.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, S., 2006: Generalized Additive Models: An Introduction with R .Chapman and Hall/CRC, 416 pp.

  • Yair, Y., Y. Yair, B. Rubin, R. Confino-Cohen, Y. Rosman, E. Shachar, and M. Rottem, 2019: First reported case of thunderstorm asthma in Israel. Nat. Hazards Earth Syst. Sci., 19, 27152725, https://doi.org/10.5194/nhess-19-2715-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zink, K., P. Kaufmann, B. Petitpierre, O. Broennimann, A. Guisan, E. Gentilini, and M. W. Rotach, 2017: Numerical ragweed pollen forecasts using different source maps: A comparison for France. Int. J. Biometeor., 61, 2333, https://doi.org/10.1007/s00484-016-1188-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 1 1
Full Text Views 18 18 18
PDF Downloads 6 6 6

A Pilot Forecasting System for Epidemic Thunderstorm Asthma in Southeastern Australia

View More View Less
  • 1 Bureau of Meteorology, Melbourne, Victoria, Australia
  • 2 School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
  • 3 School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
  • 4 Department of Health and Human Services, Melbourne, Victoria, Australia
  • 5 Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
  • 6 School of Biomedical Sciences, Queensland University of Technology, and Metro North Hospital and Health Service, Brisbane, Queensland, Australia
  • 7 School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
  • 8 Department of Earth and Environmental Sciences, Macquarie University, Sydney, New South Wales, Australia
  • 9 Oceans and Atmosphere, CSIRO, Aspendale, Victoria, Australia
  • 10 School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
© Get Permissions
Restricted access

Abstract

In November 2016, an unprecedented epidemic thunderstorm asthma event in Victoria, Australia, resulted in many thousands of people developing breathing difficulties in a very short period of time, including 10 deaths, and created extreme demand across the Victorian health services. To better prepare for future events, a pilot forecasting system for epidemic thunderstorm asthma (ETSA) risk has been developed for Victoria. The system uses a categorical risk-based approach, combining operational forecasting of gusty winds in severe thunderstorms with statistical forecasts of high ambient grass pollen concentrations, which together generate the risk of epidemic thunderstorm asthma. This pilot system provides the first routine daily epidemic thunderstorm asthma risk forecasting service in the world that covers a wide area, and integrates into the health, ambulance, and emergency management sector. Epidemic thunderstorm asthma events have historically occurred infrequently, and no event of similar magnitude has impacted the Victorian health system since. However, during the first three years of the pilot, 2017–19, two high asthma presentation events and four moderate asthma presentation events were identified from public hospital emergency department records. The ETSA risk forecasts showed skill in discriminating between days with and without health impacts. However, even with hindsight of the actual weather and airborne grass pollen conditions, some high asthma presentation events occurred in districts that were assessed as low risk for ETSA, reflecting the challenge of predicting this unusual phenomenon.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elizabeth E. Ebert, beth.ebert@bom.gov.au

Abstract

In November 2016, an unprecedented epidemic thunderstorm asthma event in Victoria, Australia, resulted in many thousands of people developing breathing difficulties in a very short period of time, including 10 deaths, and created extreme demand across the Victorian health services. To better prepare for future events, a pilot forecasting system for epidemic thunderstorm asthma (ETSA) risk has been developed for Victoria. The system uses a categorical risk-based approach, combining operational forecasting of gusty winds in severe thunderstorms with statistical forecasts of high ambient grass pollen concentrations, which together generate the risk of epidemic thunderstorm asthma. This pilot system provides the first routine daily epidemic thunderstorm asthma risk forecasting service in the world that covers a wide area, and integrates into the health, ambulance, and emergency management sector. Epidemic thunderstorm asthma events have historically occurred infrequently, and no event of similar magnitude has impacted the Victorian health system since. However, during the first three years of the pilot, 2017–19, two high asthma presentation events and four moderate asthma presentation events were identified from public hospital emergency department records. The ETSA risk forecasts showed skill in discriminating between days with and without health impacts. However, even with hindsight of the actual weather and airborne grass pollen conditions, some high asthma presentation events occurred in districts that were assessed as low risk for ETSA, reflecting the challenge of predicting this unusual phenomenon.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elizabeth E. Ebert, beth.ebert@bom.gov.au
Save