• Alexander, J. C., J. Yorke, Z. You, and I. Kan, 1992: Riddled basin. Int. J. Bifurcation Chaos, 02, 795813, https://doi.org/10.1142/S0218127492000446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cazelles, B., 2001: Dynamics with riddled basins of attraction in models of interacting populations. Chaos Solitons Fractals, 12, 301311, https://doi.org/10.1016/S0960-0779(00)00047-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and J. G. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36, 12051216, https://doi.org/10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z.-M., and X. Xiong, 2016: Equilibrium states of the Charney-DeVore quasi-geostrophic equation in mid-latitude atmosphere. J. Math. Anal. Appl., 444, 14031416, https://doi.org/10.1016/j.jmaa.2016.07.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crommelin, D. T., J. D. Opsteegh, and F. Verhulst, 2004: A mechanism for atmospheric regime behavior. J. Atmos. Sci., 61, 14061419, https://doi.org/10.1175/1520-0469(2004)061<1406:AMFARB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faghih-Naini, S. and B.-W. Shen, 2018: Quasi-periodic orbits in the five-dimensional nondissipative Lorenz model: The role of the extended nonlinear feedback loop. Int. J. Bifurcation Chaos, 28, 1850072, https://doi.org/10.1142/S0218127492000446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franz, M., and M. Zhang, 1995: Suppression and creation of chaos in a periodically forced Lorenz system. Phys. Rev. E, 52, 35583565, https://doi.org/10.1103/PhysRevE.52.3558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garashchuk, I. R., D. I. Sinelshchikov, A. O. Kazakov, and N. A. Kudryashov, 2019: Hyperchaos and multistability in the model of two interacting microbubble contrast agents. Chaos, 29, 063131, https://doi.org/10.1063/1.5098329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghil, M., P. Read and L. Smith, 2010: Geophysical flows as dynamical systems: The influence of Hide’s experiments. Astron. Geophys., 51, 4.284.35, https://doi.org/10.1111/j.1468-4004.2010.51428.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grebogi, C., S. W. McDonald, E. Ott, and J. A. Yorke, 1983: Final state sensitivity: An obstruction to predictability. Phys. Lett. A, 99, 415418, https://doi.org/10.1016/0375-9601(83)90945-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guckenheimer, J., A. Timmermann, H. Dijkstra, and A. Roberts, 2017: (Un)predictability of strong El Niño events. Dyn. Stat. Climate Syst., 2, dzx004, https://doi.org/10.1093/CLIMSYS/DZX004.

    • Search Google Scholar
    • Export Citation
  • Hilborn, R. C., 2000: Chaos and Nonlinear Dynamics. An Introduction for Scientists and Engineers. 2nd ed. Oxford University Press, 650 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, D. W., and P. Smith, 2007: Nonlinear Ordinary Differential Equations. An Introduction for Scientists and Engineers. 4th ed. Oxford University Press, 560 pp.

    • Search Google Scholar
    • Export Citation
  • Judt, F., 2020: Atmospheric predictability of the tropics, middle latitudes, and polar regions explored through global storm-resolving simulations. J. Atmos. Sci., 77, 257276, https://doi.org/10.1175/JAS-D-19-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H.-L., F. Sassi, and R. R. Garcia, 2009: Error growth in a whole atmosphere climate model. J. Atmos. Sci., 66, 173186, https://doi.org/10.1175/2008JAS2825.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1963a: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1963b: The predictability of hydrodynamic flow. Trans. New York Acad. Sci. Ser. II, 25, 409432, https://doi.org/10.1111/J.2164-0947.1963.TB01464.X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1963c: The mechanics of vacillation. J. Atmos. Sci., 20, 448464, https://doi.org/10.1175/1520-0469(1963)020<0448:TMOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, https://doi.org/10.3402/tellusa.v21i3.10086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1972: Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? Proc. 139th Meeting of AAAS Section on Environmental Sciences, Cambridge, MA, AAAS, 5 pp., https://eaps4.mit.edu/research/Lorenz/Butterfly_1972.pdf.

  • Lorenz, E., 1984: Irregularity: A fundamental property of the atmosphere. Tellus, 36A, 98110, https://doi.org/10.1111/j.1600-0870.1984.TB00230.X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1986: On the existence of a slow manifold. J. Atmos. Sci., 43, 15471558, https://doi.org/10.1175/1520-0469(1986)043<1547:OTEOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1989: Computational chaos: A prelude to computational instability. Physica D, 35D, 299317, https://doi.org/10.1016/0167-2789(89)90072-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1990: Can chaos and intransitivity lead to interannual variability? Tellus, 42A, 378389, https://doi.org/10.3402/tellusa.v42i3.11884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1993: The Essence of Chaos. University of Washington Press, 227 pp.

  • Lorenz, E., 2006: Computational periodicity as observed in a simple system. Tellus, 58A, 549557, https://doi.org/10.1111/j.1600-0870.2006.00201.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucarini, V., 2019: Stochastic resonance for nonequilibrium systems. Phys. Rev. E, 100, 062124, https://doi.org/10.1103/PhysRevE.100.062124.

  • Lucarini, V., and T. Bódai, 2019: Transitions across melancholia states in a climate model: Reconciling the deterministic and stochastic points of view. Phys. Rev. Lett., 122, 158701, https://doi.org/10.1103/PhysRevLett.122.158701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, L., and G. A. Gottwald, 2012: Data assimilation in slow–fast systems using homogenized climate models. J. Atmos. Sci., 69, 13591377, https://doi.org/10.1175/JAS-D-11-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, S., B.-S. Han, J. Park, J. M. Seo, and J.-J. Baik, 2017: Periodicity and chaos of high-order Lorenz systems. Int. J. Bifurcation Chaos, 27, 1750176, https://doi.org/10.1142/S0218127417501760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, S., J. M. Seo, B.-S. Han, J. Park, and J.-J. Baik, 2019: A physically extended Lorenz system. Chaos, 29, 063129, https://doi.org/10.1063/1.5095466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, S., J. M. Seo, and J.-J. Baik, 2020: High-dimensional generalizations of the Lorenz system and implications for predictability. Phys. Scr., 95, 085209, https://doi.org/10.1088/1402-4896/ab9d3e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nese, J. M., 1989: Quantifying local predictability in phase space. Physica D, 35, 237250, https://doi.org/10.1016/0167-2789(89)90105-X.

  • Noack, B., and H. Eckelmann, 1994: A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech., 270, 297330, https://doi.org/10.1017/S0022112094004283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., B.-S. Han, H. Lee, Y.-L. Jeon, and J.-J. Baik, 2016: Stability and periodicity of high-order Lorenz–Stenflo equations. Phys. Scr., 91, 065202, https://doi.org/10.1088/0031-8949/91/6/065202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1972: Limit cycles and unstable baroclinic waves. J. Atmos. Sci., 29, 5363, https://doi.org/10.1175/1520-0469(1972)029<0053:LCAUBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 2019: The effect of beta on the downstream development of unstable, chaotic baroclinic waves. J. Phys. Oceanogr., 49, 23372343, https://doi.org/10.1175/JPO-D-19-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., and C. Frenzen, 1980: Chaotic and periodic behavior of finite-amplitude baroclinic waves. J. Atmos. Sci., 37, 11771196, https://doi.org/10.1175/1520-0469(1980)037<1177:CAPBOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña, M., and E. Kalnay, 2004: Separating fast and slow modes in coupled chaotic systems. Nonlinear Processes Geophys., 11, 319327, https://doi.org/10.5194/npg-11-319-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and X. Zeng, 1994: Long-term variability of climate. J. Atmos. Sci., 51, 155159, https://doi.org/10.1175/1520-0469(1994)051<0155:LTVOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramesh, K., J. Murua, and A. Gopalarathnam, 2015: Limit-cycle oscillations in unsteady flows dominated by intermittent leading-edge vortex shedding. J. Fluids Struct., 55, 84105, https://doi.org/10.1016/j.jfluidstructs.2015.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renaud, A., L.-P. Nadeau, and A. Venaille, 2019: Periodicity disruption of a model quasibiennial oscillation of equatorial winds. Phys. Rev. Lett., 122, 214504, https://doi.org/10.1103/PhysRevLett.122.214504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reyes, T., and B.-W. Shen, 2019: A recurrence analysis of chaotic and non-chaotic solutions within a generalized nine-dimensional Lorenz model. Chaos Solitons Fractals, 125, 112, https://doi.org/10.1016/j.chaos.2019.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saltzman, B., 1962: Finite amplitude free convection as an initial value problem. J. Atmos. Sci., 19, 329341, https://doi.org/10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., 2014: Nonlinear feedback in a five-dimensional Lorenz model. J. Atmos. Sci., 71, 17011723, https://doi.org/10.1175/JAS-D-13-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., 2015: Nonlinear feedback in a six-dimensional Lorenz model: Impact of an additional heating term. Nonlinear Processes Geophys., 22, 749764, https://doi.org/10.5194/npg-22-749-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., 2016: Hierarchical scale dependence associated with the extension of the nonlinear feedback loop in a seven-dimensional Lorenz model. Nonlinear Processes Geophys., 23, 189203, https://doi.org/10.5194/NPG-23-189-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., 2017: On an extension of the nonlinear feedback loop in a nine-dimensional Lorenz model. Chaotic Model. Simul., 2, 147157.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., 2018: On periodic solutions in the non-dissipative Lorenz model: The role of the nonlinear feedback loop. Tellus, 70A, 1471912, https://doi.org/10.1080/16000870.2018.1471912.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., 2019a: Aggregated negative feedback in a generalized Lorenz model. Int. J. Bifurcation Chaos, 29, 1950037, https://doi.org/10.1142/S0218127419500378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., 2019b: On the predictability of 30-day global mesoscale simulations of African easterly waves during summer 2006: A view with the generalized Lorenz model. Geosciences, 9, 281, https://doi.org/10.3390/GEOSCIENCES9070281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., 2020: Homoclinic orbits and solitary waves within the non-dissipative Lorenz model and KdV equation. Int. J. Bifurcation Chaos, 30, 2050257, 1–15, https://doi.org/10.1142/S0218127420502570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., 2021: Solitary waves, homoclinic orbits, and nonlinear oscillations within the non-dissipative Lorenz model, the inviscid Pedlosky model, and the KdV equation. Proc. 13th Chaos Int. Conf., CHAOS 2020, C. H. Skiadas and Yiannis Dimotikalis, Eds., Springer Proceedings in Complexity, Springer, https://doi.org/10.13140/RG.2.2.26813.90089, in press.

    • Crossref
    • Export Citation
  • Shen, B.-W., W.-K. Tao, and M.-L. C. Wu, 2010: African easterly waves in 30-day high-resolution global simulations: A case study during the 2006 NAMMA period. Geophys. Res. Lett., 37, L18803, https://doi.org/10.1029/2010GL044355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., T. A. L. Reyes, and S. Faghih-Naini, 2019: Coexistence of chaotic and non-chaotic orbits in a new nine-dimensional Lorenz model. 11th Chaotic Modeling and Simulation Int. Conf., Rome, Italy, CMSIM, 239–255, https://doi.org/10.1007/978-3-030-15297-0_22.

    • Crossref
    • Export Citation
  • Shen, B.-W., R. A. Pielke Sr., X. Zeng, J.-J. Baik, S. Faghih-Naini, J. Cui, R. Atlas, and T. A. Reyes, 2021: Is weather chaotic? Coexisting chaotic and non-chaotic attractors within Lorenz models. Proc. 13th Chaos Int. Conf., CHAOS 2020, C. H. Skiadas and Yiannis Dimotikalis, Eds., Springer Proceedings in Complexity, Springer, in press.

  • Shimizu, T., 1979: Analytic form of the simplest limit cycle in the Lorenz model. Physica A, 97A, 383398, https://doi.org/10.1016/0378-4371(79)90113-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, J., and T. Palmer, 2011: Uncertainty in weather and climate prediction. Philos. Trans. Roy. Soc, 369A, 47514767, https://doi.org/10.1098/RSTA.2011.0161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and J. M. Reilly, 1977: On a theory of amplitude vacillation in baroclinic waves: Some numerical solutions. J. Atmos. Sci., 34, 12561260, https://doi.org/10.1175/1520-0469(1977)034<1256:OATOAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sparrow, C., 1982: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer, 269 pp.

  • Sprott, J. C., and A. Xiong, 2015: Classifying and quantifying basins of attraction. Chaos, 25, 083101, https://doi.org/10.1063/1.4927643.

  • Sprott, J. C., J. A. Vano, J. C. Wildenberg, M. B. Anderson, and J. K. Noel, 2005: Coexistence and chaos in complex ecologies. Phys. Lett. A, 335, 207212, https://doi.org/10.1016/J.PHYSLETA.2004.12.068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprott, J. C., X. Wang, and G. Chen, 2013: Coexistence of point, periodic and strange attractors. Int. J. Bifurcation Chaos, 23, 1350093, https://doi.org/10.1142/S0218127413500934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, J. M. T., and H. B. Stewart, 2002: Nonlinear Dynamics and Chaos. 2nd ed. John Wiley and Sons, 437 pp.

  • Wu, Y.-L., and B.-W. Shen, 2016: An evaluation of the parallel ensemble empirical mode decomposition method in revealing the role of downscaling processes associated with African easterly waves in tropical cyclone genesis. J. Atmos. Oceanic Technol., 33, 16111628, https://doi.org/10.1175/JTECH-D-15-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yorke, J., and E. Yorke, 1979: Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model. J. Stat. Phys., 21, 263277, https://doi.org/10.1007/BF01011469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., R. A. Pielke Sr., and R. Eykholt, 1993: Chaos theory and its applications to the atmosphere. Bull. Amer. Meteor. Soc., 74, 631644, https://doi.org/10.1175/1520-0477(1993)074<0631:CTAIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Q. Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen, and K. Emanuel, 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 10771091, https://doi.org/10.1175/JAS-D-18-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1294 1294 969
PDF Downloads 1347 1347 1010

Is Weather Chaotic?: Coexistence of Chaos and Order within a Generalized Lorenz Model

View More View Less
  • 1 Department of Mathematics and Statistics, San Diego State University, San Diego, California
  • 2 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
  • 3 Department of Hydrology and Atmospheric Science, The University of Arizona, Tucson, Arizona
  • 4 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
  • 5 Department of Mathematics and Statistics, San Diego State University, San Diego, California, and University of Bayreuth, Bayreuth, and Friedrich-Alexander University Erlangen–Nuremberg, Erlangen, Germany
  • 6 Department of Mathematics and Statistics, and Department of Computer Sciences, San Diego State University, San Diego, California
  • 7 National Oceanic and Atmospheric Administration/AOML, Miami, Florida
© Get Permissions
Restricted access

Abstract

Over 50 years since Lorenz’s 1963 study and a follow-up presentation in 1972, the statement “weather is chaotic” has been well accepted. Such a view turns our attention from regularity associated with Laplace’s view of determinism to irregularity associated with chaos. In contrast to single-type chaotic solutions, recent studies using a generalized Lorenz model (GLM) have focused on the coexistence of chaotic and regular solutions that appear within the same model using the same modeling configurations but different initial conditions. The results, with attractor coexistence, suggest that the entirety of weather possesses a dual nature of chaos and order with distinct predictability. In this study, based on the GLM, we illustrate the following two mechanisms that may enable or modulate two kinds of attractor coexistence and, thus, contribute to distinct predictability: 1) the aggregated negative feedback of small-scale convective processes that can produce stable nontrivial equilibrium points and, thus, enable the appearance of stable steady-state solutions and their coexistence with chaotic or nonlinear oscillatory solutions, referred to as the first and second kinds of attractor coexistence; and 2) the modulation of large-scale time-varying forcing (heating) that can determine (or modulate) the alternative appearance of two kinds of attractor coexistence. Based on our results, we then discuss new opportunities and challenges in predictability research with the aim of improving predictions at extended-range time scales, as well as subseasonal to seasonal time scales.

Retired

Supplemental material: https://doi.org/10.1175/BAMS-D-19-0165.2

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo-Wen Shen, bshen@sdsu.edu

Abstract

Over 50 years since Lorenz’s 1963 study and a follow-up presentation in 1972, the statement “weather is chaotic” has been well accepted. Such a view turns our attention from regularity associated with Laplace’s view of determinism to irregularity associated with chaos. In contrast to single-type chaotic solutions, recent studies using a generalized Lorenz model (GLM) have focused on the coexistence of chaotic and regular solutions that appear within the same model using the same modeling configurations but different initial conditions. The results, with attractor coexistence, suggest that the entirety of weather possesses a dual nature of chaos and order with distinct predictability. In this study, based on the GLM, we illustrate the following two mechanisms that may enable or modulate two kinds of attractor coexistence and, thus, contribute to distinct predictability: 1) the aggregated negative feedback of small-scale convective processes that can produce stable nontrivial equilibrium points and, thus, enable the appearance of stable steady-state solutions and their coexistence with chaotic or nonlinear oscillatory solutions, referred to as the first and second kinds of attractor coexistence; and 2) the modulation of large-scale time-varying forcing (heating) that can determine (or modulate) the alternative appearance of two kinds of attractor coexistence. Based on our results, we then discuss new opportunities and challenges in predictability research with the aim of improving predictions at extended-range time scales, as well as subseasonal to seasonal time scales.

Retired

Supplemental material: https://doi.org/10.1175/BAMS-D-19-0165.2

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo-Wen Shen, bshen@sdsu.edu

Supplementary Materials

    • Supplemental Materials (PDF 795.49 KB)
Save