• Bennartz, R., J. Fan, J. Rausch, L. R. Leung, and A. K. Heidinger, 2011: Pollution from China increases cloud droplet number, suppresses rain over the East China Sea. Geophys. Res. Lett., 38, L09704, https://doi.org/10.1029/2011GL047235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, M. E., and E. B. Brickley, 2012: Evaluating the use of remote sensing data in the U.S. Agency for International Development Famine Early Warning Systems network. J. Appl. Remote Sens., 6, 063511, https://doi.org/10.1117/1.JRS.6.063511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burns, B. A., M. Schmidt-Grottrup, and T. Viehoff, 1992: Methods for digital analysis of AVHRR sea ice images. IEEE Trans. Geosci. Remote Sens., 30, 589602, https://doi.org/10.1109/36.142937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., J. Sullivan, E. Maturi, and J. Sapper, 2004: The effect of orbit drift on the calibration of the 3.7 μm channel of the AVHRR onboard NOAA-14 and its impact on night-time sea surface temperature retrievals. Int. J. Remote Sens., 25, 975986, https://doi.org/10.1080/0143116031000095899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., X. Xiong, A. Wu, and X. Wu, 2008: Assessing the consistency of AVHRR and MODIS L1B reflectance for generating fundamental climate date records. J. Geophys. Res., 113, D09114, https://doi.org/10.1029/2007JD009363.

    • Search Google Scholar
    • Export Citation
  • Cao, C., F. J. D. Luccia, X. Xiong, R. Wolfe, and F. Weng, 2014: Early on-orbit performance of the visible infrared imaging radiometer suite onboard the Suomi National Polar-Orbiting Partnership (S-NPP) satellite. IEEE Trans. Geosci. Remote Sens., 52, 11421156, https://doi.org/10.1109/TGRS.2013.2247768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cracknell, A. P., 1997: The Advanced Very High Resolution Radiometer (AVHRR). Taylor and Francis, 534 pp.

  • Dworak, R., and J. Key, 2009: Twenty years of polar winds from AVHRR: Validation and comparison to the ERA-40. J. Appl. Meteor. Climatol., 48, 2440, https://doi.org/10.1175/2008JAMC1863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandes, R., H. Zhao, X. Wang, J. Key, X. Qu, and A. Hall, 2009: Controls on Northern Hemisphere snow albedo feedback quantified using satellite Earth observations. Geophys. Res. Lett., 36, L21702, https://doi.org/10.1029/2009GL040057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geogdzhayev, I. V., M. I. Mishchenko, L. Liu, and L. Remer, 2004: Global two-channel AVHRR aerosol climatology: Effects of stratospheric aerosols and preliminary comparisons with MODIS and MISR retrievals. J. Quant. Spectrosc. Radiat. Transfer, 88, 4759, https://doi.org/10.1016/j.jqsrt.2004.03.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griggs, M., 1975: Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data. J. Air Pollut. Control Assoc., 25, 622626, https://doi.org/10.1080/00022470.1975.10470118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutman, G., and A. Ignatov, 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 15331543, https://doi.org/10.1080/014311698215333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauser, A., D. Oesch, N. Foppa, and S. Wunderle, 2005: NOAA AVHRR derived aerosol optical depth over land. J. Geophys. Res., 110, D08204, https://doi.org/10.1029/2004JD005439.

    • Search Google Scholar
    • Export Citation
  • He, K., A. Ignatov, Y. Kihai, C. Cao, and J. Stroup, 2016: Sensor Stability for SST (3S): Toward improved long-term characterization of AVHRR thermal bands. Remote Sens., 8, 346, https://doi.org/10.3390/rs8040346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., C. Cao, and J. T. Sullivan, 2002: Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels. J. Geophys. Res., 107, 4702, https://doi.org/10.1029/2001JD002035.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., W. C. Straka, C. C. Molling, J. T. Sullivan, and X. Wu, 2010: Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record. Int. J. Remote Sens., 31, 64936517, https://doi.org/10.1080/01431161.2010.496472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., M. J. Foster, A. Walther, and X. Zhao, 2014: The Pathfinder Atmospheres–Extended AVHRR climate dataset. Bull. Amer. Meteor. Soc., 95, 909922, https://doi.org/10.1175/BAMS-D-12-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higurashi, A., and T. Nakajima, 1999: Development of a two-channel aerosol retrieval algorithm on a global scale using NOAA AVHRR. J. Atmos. Sci., 56, 924941, https://doi.org/10.1175/1520-0469(1999)056<0924:DOATCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., 1986: Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens., 7, 14171434, https://doi.org/10.1080/01431168608948945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., E. Vermote, Y. J. Kaufman, D. Tanre, and V. Kalb, 1992: Aerosol retrieval over land from AVHRR data-application for atmospheric correction. IEEE Trans. Geosci. Remote Sens., 30, 212222, https://doi.org/10.1109/36.134072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollmann, R., and Coauthors, 2013: The ESA Climate Change Initiative: Satellite data records for essential climate variables. Bull. Amer. Meteor. Soc., 94, 15411552, https://doi.org/10.1175/BAMS-D-11-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., J. Lee, A. M. Sayer, N. Carletta, S.-H. Chen, C. J. Tucker, B. N. Holben, and S.-C. Tsay, 2017: Retrieving near-global aerosol loading over land and ocean from AVHRR. J. Geophys. Res. Atmos., 122, 99689989, https://doi.org/10.1002/2017JD026932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchinson, C. F., 1991: Uses of satellite data for famine early warning in sub-Saharan Africa. Int. J. Remote Sens ., 12, 14051421, https://doi.org/10.1080/01431169108929733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., L. Stowe, and R. Singh, 1998: Sensitivity study of the Ångström exponent derived from AVHRR over the oceans. Adv. Space Res., 21, 439442, https://doi.org/10.1016/S0273-1177(97)00926-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., J. Sapper, S. Cox, I. Laszlo, N. R. Nalli, and K. B. Kidwell, 2004a: Operational Aerosol Observations (AEROBS) from AVHRR/3 on board NOAA-KLM satellites. J. Atmos. Oceanic Technol., 21, 326, https://doi.org/10.1175/1520-0426(2004)021<0003:OAOAFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., I. Laszlo, E. D. Harrod, K. B. Kidwell, and G. P. Goodrum, 2004b: Equator crossing times for NOAA, ERS and EOS sun-synchronous satellites. Int. J. Remote Sens., 25, 52555266, https://doi.org/10.1080/01431160410001712981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., and Coauthors, 2016: AVHRR GAC SST reanalysis version 1 (RAN1). Remote Sens., 8, 315, https://doi.org/10.3390/rs8040315.

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • James, M. E., and S. N. V. Kalluri, 1994: The pathfinder AVHRR land data set—An improved coarse resolution data set for terrestrial monitoring. Int. J. Remote Sens., 15, 33473363, https://doi.org/10.1080/01431169408954335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Justice, C. O., J. R. G. Townshend, B. N. Holben, and C. J. Tucker, 1985: Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens., 6, 12711318, https://doi.org/10.1080/01431168508948281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalluri, S., C. Cao, A. Heidinger, A. Ignatov, and J. Key, 2019: The last Advanced Very High Resolution Radiometer. 2019 IEEE Int. Geoscience and Remote Sensing Symp., Yokohama, Japan, IEEE, 8388–8391, https://doi.org/10.1109/IGARSS.2019.8897974.

    • Crossref
    • Export Citation
  • Karlsson, K. G., and Coauthors, 2013: CLARA-A1: A cloud, albedo, and radiation dataset from 28 yr of global AVHRR data. Atmos. Chem. Phys., 13, 53515367, https://doi.org/10.5194/acp-13-5351-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., and C. Sendra, 1988: Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int. J. Remote Sens., 9, 13571381, https://doi.org/10.1080/01431168808954942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, J., and M. Haefliger, 1992: Arctic ice surface temperature retrieval from AVHRR thermal channels. J. Geophys. Res., 97, 58855893, https://doi.org/10.1029/92JD00348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, J., X. J. Wang, Y. H. Liu, R. Dworak, and A. Letterly, 2016: The AVHRR Polar Pathfinder climate data records. Remote Sens ., 8, 167, https://doi.org/10.3390/rs8030167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, J., Y. Liu, and X. Wang, 2019a, National Center for Environmental Information: NOAA Climate Data Record of AVHRR Polar Pathfinder Extended (APP-X), version 2, NOAA NCEI, accessed 18 January 2021, https://doi.org/10.25921/AE96-0E57.

    • Crossref
    • Export Citation
  • Key, J., Y. Liu, and X. Wang, 2019b, National Center for Environmental Information: NOAA Climate Data Record of AVHRR Polar Pathfinder (APP), version 2, NOAA NCEI, accessed 18 January 2021, https://doi.org/10.25921/X2X1-JR34.

    • Crossref
    • Export Citation
  • Kidwell, K. B., 1995: NOAA Polar Orbiter data (TIROS-N, NOAA-6, NOAA-7, NOAA-8, NOAA-9, NOAA-10, NOAA-11, NOAA-12, and NOAA-14) users guide. NOAA/NESDIS Rep., 410 pp.

  • Kilpatrick, K. A., G. P. Podestá, and R. Evans, 2001: Overview of the NOAA/NASA Advanced Very High Resolution Radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res., 106, 91799197, https://doi.org/10.1029/1999JC000065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, F. N., 1997: Global drought watch from space. Bull. Amer. Meteor. Soc., 78, 621636, https://doi.org/10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kriebel, K., G. Gesell, M. Kaestner, and H. Mannstein, 1994: Cloud detection in AVHRR and ATSR data with APOLLO. Proc. SPIE, 2309, https://doi.org/10.1117/12.196703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laszlo, I., H. Liu, and A. Ignatov, 2008: Comparison of single-channel and multichannel aerosol optical depths derived from MAPSS data. J. Geophys. Res., 113, D19S90, https://doi.org/10.1029/2007JD009664.

    • Search Google Scholar
    • Export Citation
  • Letterly, A., J. Key, and Y. H. Liu, 2018: Arctic climate: Changes in sea ice extent outweigh changes in snow cover. Cryosphere, 12, 33733382, https://doi.org/10.5194/tc-12-3373-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. J. Kaufamn, C. Ichoku, R. Fraser, A. Trishchenko, L. Giglio, J.-Z. Jin, and X. Yu, 2001: A review of AVHRR-based active fire detection algorithms: Principles, limitations and recommendations. Global and Regional Vegetation Fire Monitoring from Space: Planning a Coordinated International Effort, F. J. Ahren, J. G. Goldammer, and C. O. Justice, Eds., SPB Academic Publishing, 199–225.

  • Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang, and J. W. Merchant, 2000: Development of a global land cover characteristics database and IGBP Discover from 1 km AVHRR data. Int. J. Remote Sens., 21, 13031330, https://doi.org/10.1080/014311600210191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maiden, M. E., and S. Greco, 1994: NASA’s Pathfinder data set programme: Land surface parameters. Int. J. Remote Sens., 15, 33333345, https://doi.org/10.1080/01431169408954334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marvel, K., M. Zelinka, S. A. Klein, C. Bonfils, P. Caldwell, C. Doutriaux, B. D. Santer, and K. E. Taylor, 2015: External influences on modeled and observed cloud trends. J. Climate, 28, 48204840, https://doi.org/10.1175/JCLI-D-14-00734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslanik, J., C. Fowler, J. Key, T. Scambos, T. Hutchinson, and W. Emery, 1997: AVHRR-based Polar Pathfinder products for modeling applications. Ann. Glaciol., 25, 388392, https://doi.org/10.3189/S0260305500014336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maturi, E., A. Harris, J. Mittaz, J. Sapper, G. Wick, X. Zhu, P. Dash, and P. Koner, 2017: A new high-resolution sea surface temperature blended analysis. Bull. Amer. Meteor. Soc., 98, 10151026, https://doi.org/10.1175/BAMS-D-15-00002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClain, E. P., W. G. Pichel, and C. C. Walton, 1985: Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res., 90, 11 58711 601, https://doi.org/10.1029/JC090iC06p11587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W. N., J. A. Maslanik, C. W. Fowler, and J. R. Key, 1997: Multiparameter AVHRR-derived products for Arctic climate studies. Earth Interact ., 1, https://doi.org/10.1175/1087-3562(1997)001<0001:MADPFA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., and Coauthors, 2014: Sea surface temperature datasets for climate applications from phase 1 of the European Space Agency Climate Change Initiative (SST CCI). Geosci. Data J., 1, 179191, https://doi.org/10.1002/gdj3.20.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., K. Bedka, Q. Trepte, C. R. Yost, S. T. Bedka, B. Scarino, K. Khlopenkov, and M. M. Khaiyer, 2016: A consistent long-term cloud and clear-sky radiation property dataset from the Advanced Very High Resolution Radiometer (AVHRR). Climate Algorithm Theoretical Basis Doc., revision, 159 pp., https://doi.org/10.789/V5HT2M8T.

  • Mishchenko, M. I., and I. V. Geogdzhayev, 2007: Satellite remote sensing reveals regional tropospheric aerosol trends. Opt. Express, 15, 74237438, https://doi.org/10.1364/OE.15.007423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., I. V. Geogdzhayev, B. Cairns, W. B. Rossow, and A. A. Lacis, 1999: Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: Sensitivity analysis and preliminary results. Appl. Opt., 38, 73257341, https://doi.org/10.1364/AO.38.007325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2020: CoastWatch East Coast node. Accessed 12 August 2020, https://eastcoast.coastwatch.noaa.gov/index.php.

  • Norris, J. R., R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O’Dell, and S. A. Klein, 2016: Evidence for climate change in the satellite cloud record. Nature, 536, 7275, https://doi.org/10.1038/nature18273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parol, F., J. C. Buriez, G. Brogniez, and Y. Fouquart, 1991: Information content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles. J. Appl. Meteor., 30, 973984, https://doi.org/10.1175/1520-0450-30.7.973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, P., R. Bonsignori, P. Schlüssel, F. Schmülling, L. Spezzi, P. Watts, and I. Zerfowski, 2016: Overview of calibration and validation activities for the EUMETSAT polar system: Second generation (EPS-SG) visible/infrared imager (METimage). Proc. SPIE, 10000, https://doi.org/10.1117/12.2240938.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., and F. P. J. Valero, 1995: A validation of a satellite cloud retrieval during ASTEX. J. Atmos. Sci., 52, 29853001, https://doi.org/10.1175/1520-0469(1995)052<2985:AVOASC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, B., 1998: The interactive multisensor snow and ice mapping system. Hydrol. Processes, 12, 15371546, https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1537::AID-HYP679>3.0.CO;2-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, C. R. N., and J. Chen, 1999: Revised post-launch calibration of the visible and near-infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 spacecraft. Int. J. Remote Sens., 20, 34853491, https://doi.org/10.1080/014311699211147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, C. R. N., L. L. Stowe, and E. P. McClain, 1989: Remote sensing of aerosols over the oceans using AVHRR data: Theory, practice and applications. Int. J. Remote Sens., 10, 743749, https://doi.org/10.1080/01431168908903915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, D. J., S. E. Randolph, R. W. Snow, and S. I. Hay, 2002: Satellite imagery in the study and forecast of malaria. Nature, 415, 710715, https://doi.org/10.1038/415710a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanov, P., G. Gutman, and I. Csiszar, 2000: Automated monitoring of snow over North America with multispectral satellite data. J. Appl. Meteor., 39, 18661880, https://doi.org/10.1175/1520-0450(2000)039<1866:AMOSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, https://doi.org/10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, 1989: MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote Sens., 27, 145153, https://doi.org/10.1109/36.20292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, S. R., D. F. McGinnis, and J. A. Gatlin, 1981: Use of NOAA/AVHRR visible and near-infrared data for land remote sensing. NOAA Tech. Rep. NESS 84, 48 pp.

  • Simpson, J. J., J. R. Stitt, and M. Sienko, 1998: Improved estimates of the areal extent of snow cover from AVHRR data. J. Hydrol., 204, 123, https://doi.org/10.1016/S0022-1694(97)00087-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stowe, L. L., R. M. Carey, and P. P. Pellegrino, 1992: Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data. Geophys. Res. Lett., 19, 159162, https://doi.org/10.1029/91GL02958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stowe, L. L., A. M. Ignatov, and R. R. Singh, 1997: Development, validation, and potential enhancements to the second-generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic And Atmospheric Administration. J. Geophys. Res., 102, 16 92316 934, https://doi.org/10.1029/96JD02132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stowe, L. L., H. Jacobowitz, G. Ohring, K. R. Knapp, and N. R. Nalli, 2002: The Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmosphere (PATMOS) climate dataset: Initial analyses and evaluations. J. Climate, 15, 12431260, https://doi.org/10.1175/1520-0442(2002)015<1243:TAVHRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, A. E., and L. L. Stowe, 1993: Comparing stratospheric aerosols from El Chichón and Mount Pinatubo using AVHRR data. Geophys. Res. Lett., 20, 11831186, https://doi.org/10.1029/93GL01519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, S. M., A. K. Heidinger, and M. J. Pavolonis, 2004: Comparison of NOAA’s operational AVHRR-derived cloud amount to other satellite-derived cloud climatologies. J. Climate, 17, 48054822, https://doi.org/10.1175/JCLI-3242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Townshend, J. R. G., 1994: Global data sets for land applications from the Advanced Very High Resolution Radiometer: An introduction. Int. J. Remote Sens., 15, 33193332, https://doi.org/10.1080/01431169408954333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trishchenko, A. P., 2009: Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors: Extension to AVHRR NOAA-17, 18 and MetOp-A. Remote Sens. Environ., 113, 335341, https://doi.org/10.1016/j.rse.2008.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., and P. J. Sellers, 1986: Satellite remote-sensing of primary production. Int. J. Remote Sens., 7, 13951416, https://doi.org/10.1080/01431168608948944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USCCSP, 2004: Our changing planet: The U.S. Climate Change Science Program for fiscal years 2004 and 2005: A report. USCCSP Rep., 159 pp.

  • Van Hoolst, R., H. Eerens, D. Haesen, A. Royer, L. Bydekerke, O. Rojas, Y. Li, and P. Racionzer, 2016: FAO’s AVHRR-based Agricultural Stress Index System (ASIS) for global drought monitoring. Int. J. Remote Sens., 37, 418439, https://doi.org/10.1080/01431161.2015.1126378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205224, https://doi.org/10.1175/BAMS-86-2-205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2002: Atmospheric circulation cells associated with the El Niño–Southern Oscillation. J. Climate, 15, 399419, https://doi.org/10.1175/1520-0442(2002)015<0399:ACCAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L. K., and C. Y. Cao, 2008: On-orbit calibration assessment of AVHRR longwave channels on MetOp-A using IASI. IEEE Trans. Geosci. Remote Sens., 46, 40054013, https://doi.org/10.1109/TGRS.2008.2001062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. J., and J. R. Key, 2003: Recent trends in Arctic surface, cloud, and radiation properties from space. Science, 299, 17251728, https://doi.org/10.1126/science.1078065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, F., and A. Ignatov, 2014: In situ SST quality monitor (iQuam). J. Atmos. Oceanic Technol., 31, 164180, https://doi.org/10.1175/JTECH-D-13-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Liu, and D. Yan, 2017: Comparisons of global land surface seasonality and phenology derived from AVHRR, MODIS, and VIIRS data. J. Geophys. Res. Biogeosci., 122, 15061525, https://doi.org/10.1002/2017JG003811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and R. Fernandes, 2009: Daily snow cover estimation from Advanced Very High Resolution Radiometer Polar Pathfinder data over Northern Hemisphere land surfaces during 1982–2004. J. Geophys. Res., 114, D05113, https://doi.org/10.1029/2008JD011272.

    • Search Google Scholar
    • Export Citation
  • Zhao, T. X. P., I. Laszlo, W. Guo, A. Heidinger, C. Cao, A. Jelenak, D. Tarpley, and J. Sullivan, 2008: Study of long-term trend in aerosol optical thickness observed from operational AVHRR satellite instrument. J. Geophys. Res., 113, D07201, https://doi.org/10.1029/2007JD009061.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., and Coauthors, 2017: NOAA Climate Data Record (CDR) of AVHRR daily and monthly aerosol optical thickness (AOT) over global oceans, version 3. NOAA NCEI, accessed 18 January 2021, https://doi.org/10.7289/V5BZ642P.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4 4 4
Full Text Views 56 56 56
PDF Downloads 44 44 44

The Advanced Very High Resolution Radiometer: Contributing to Earth Observations for over 40 Years

View More View Less
  • 1 NOAA/NESDIS/STAR, College Park, Maryland
  • 2 NOAA/NESDIS, Madison, Wisconsin
  • 3 NOAA/NESDIS/STAR, College Park, Maryland
  • 4 NOAA/NESDIS/STAR, Madison, Wisconsin
  • 5 NOAA/NESDIS/STAR, College Park, Maryland
© Get Permissions
Restricted access

Abstract

The Advanced Very High Resolution Radiometers (AVHRR), which have been flying on National Oceanic and Atmospheric Administration’s (NOAA) polar-orbiting weather satellites since 1978, provide the longest global record of Earth observations from a visible–infrared imager. Experience gained through AVHRRs has been integral to the development of the new-generation sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and associated data processing algorithms in the United States, as well as a similar class of sensor by space agencies around the world. Over four decades of data have been vital for studying Earth and its change. The MetOp-C satellite that was successfully launched in 2018 carries the last AVHRR. This article reviews the contributions of AVHRR in building a continuous global data record over the last 40 years on the occasion of its last launch.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. Kalluri, satya.kalluri@noaa.gov

Abstract

The Advanced Very High Resolution Radiometers (AVHRR), which have been flying on National Oceanic and Atmospheric Administration’s (NOAA) polar-orbiting weather satellites since 1978, provide the longest global record of Earth observations from a visible–infrared imager. Experience gained through AVHRRs has been integral to the development of the new-generation sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and associated data processing algorithms in the United States, as well as a similar class of sensor by space agencies around the world. Over four decades of data have been vital for studying Earth and its change. The MetOp-C satellite that was successfully launched in 2018 carries the last AVHRR. This article reviews the contributions of AVHRR in building a continuous global data record over the last 40 years on the occasion of its last launch.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. Kalluri, satya.kalluri@noaa.gov
Save