© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
Bloomfield, H. C., D. J. Brayshaw, L. C. Shaffrey, P. J. Coker, and H. Thornton, 2016: Quantifying the increasing sensitivity of power systems to climate variability. Environ. Res. Lett., 11, 124025, https://doi.org/10.1088/1748-9326/11/12/124025.
Cannon, A. J., C. Piani, and S. Sippel, 2020: Bias correction of climate model output for impact models. Climate Extremes and Their Implications for Impact and Risk Assessment, J. Sillmann, S. Sippel, and S. Russo, Eds., Elsevier, 77–104.
Deane, J., G. Drayton, and B. Ó. Gallachóir, 2014: The impact of sub-hourly modelling in power systems with significant levels of renewable generation. Appl. Energy, 113, 152–158, https://doi.org/10.1016/j.apenergy.2013.07.027.
Dekens, L., S. Parey, M. Grandjacques, and D. Dacunha-Castelle, 2017: Multivariate distribution correction of climate model outputs: A generalization of quantile mapping approaches. Environmetrics, 28, e2454, https://doi.org/10.1002/env.2454.
ENTSO-E, 2019: Mid-term adequacy forecast report. European Network of Transmission System Operators for Electricity, www.entsoe.eu/outlooks/midterm/.
François, B., M. Vrac, A. J. Cannon, Y. Robin, and D. Allard, 2020: Multivariate bias corrections of climate simulations: Which benefits for which losses? Earth Syst. Dyn., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020.
Goodess, C., and Coauthors, 2019: Advancing climate services for the european renewable energy sector through capacity building and user engagement. Climate Serv., 16, 100139, https://doi.org/10.1016/J.CLISER.2019.100139.
Hilbers, A. P., D. J. Brayshaw, and A. Gandy, 2019: Importance subsampling: Improving power system planning under climate-based uncertainty. Appl. Energy, 251, 113114, https://doi.org/10.1016/J.APENERGY.2019.04.110.
Ho, C. K., D. B. Stephenson, M. Collins, C. A. Ferro, and S. J. Brown, 2012: Calibration strategies: A source of additional uncertainty in climate change projections. Bull. Amer. Meteor. Soc., 93, 21–26, https://doi.org/10.1175/2011BAMS3110.1.
Hoffmann, M., L. Kotzur, D. Stolten, and M. Robinius, 2020: A review on time series aggregation methods for energy system models. Energies, 13, 641, https://doi.org/10.3390/en13030641.
Jones, P., C. Harpham, A. Troccoli, B. Gschwind, T. Ranchin, L. Wald, C. Goodess, and S. Dorling, 2017: Using ERA-Interim reanalysis for creating datasets of energy-relevant climate variables. Earth Syst. Sci. Data, 9, 471–495, https://doi.org/10.5194/essd-9-471-2017.
Maraun, D., 2016: Bias correcting climate change simulations-a critical review. Curr. Climate Change Rep., 2, 211–220, https://doi.org/10.1007/s40641-016-0050-x.
Poncelet, K., E. Delarue, D. Six, J. Duerinck, and W. D’haeseleer, 2016: Impact of the level of temporal and operational detail in energy-system planning models. Appl. Energy, 162, 631–643, https://doi.org/10.1016/j.apenergy.2015.10.100.
Shepherd, T. G. (2019). Storyline approach to the construction of regional climate change information. Proc. Roy. Soc. A, 475, 20190013, https://doi.org/10.1098/rspa.2019.0013.
Vincent, K., M. Daly, C. Scannell, and B. Leathes, 2018: What can climate services learn from theory and practice of co-production? Climate Serv., 12, 48–58, https://doi.org/10.1016/j.cliser.2018.11.001.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 352 | 352 | 245 |
PDF Downloads | 287 | 287 | 214 |
© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).