The Linearity of the Atmospheric Response to North Atlantic Sea Surface Temperature Anomalies

Frank Lunkeit Meteorologisches Institut, Universität Hamburg, Hamburg, Germany

Search for other papers by Frank Lunkeit in
Current site
Google Scholar
PubMed
Close
and
Yorck von Detten Meteorologisches Institut, Universität München, Munich, Germany

Search for other papers by Yorck von Detten in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A large number of uncoupled integrations with an idealized general circulation model are carried out to investigate the linearity of the atmospheric quasi-equilibrium response to North Atlantic sea surface temperature (SST) anomalies related to interdecadal variability. A statistical approach is used to judge the linearity of the temporally averaged global atmospheric response with respect to the amplitudes of the SST anomaly patterns. The results indicate that the assumption of a linear correlation of the corresponding magnitudes is, in general, not valid. Since the model, though idealized, provides all the characteristics of a full general circulation model (GCM), some important conclusions can be drawn for the design and interpretation of GCM sensitivity experiments.

Corresponding author address: Frank Lunkeit, Meteorologisches Institut, Universität Hamburg, Bundesstraße 55, D-20146 Hamburg, Germany.

Email: lunkeit@dkrz.de

Abstract

A large number of uncoupled integrations with an idealized general circulation model are carried out to investigate the linearity of the atmospheric quasi-equilibrium response to North Atlantic sea surface temperature (SST) anomalies related to interdecadal variability. A statistical approach is used to judge the linearity of the temporally averaged global atmospheric response with respect to the amplitudes of the SST anomaly patterns. The results indicate that the assumption of a linear correlation of the corresponding magnitudes is, in general, not valid. Since the model, though idealized, provides all the characteristics of a full general circulation model (GCM), some important conclusions can be drawn for the design and interpretation of GCM sensitivity experiments.

Corresponding author address: Frank Lunkeit, Meteorologisches Institut, Universität Hamburg, Bundesstraße 55, D-20146 Hamburg, Germany.

Email: lunkeit@dkrz.de

Save
  • Bjerknes, J., 1964: Atlantic air-sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82.

  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor.,4, 135–163.

  • Chervin, R. M., and S. H. Schneider, 1976a: A study of the response of NCAR GCM climatological statistics to random perturbations:Estimating noise levels. J. Atmos. Sci.,33, 391–404.

  • ——, and ——, 1976b: On determining the statistical significance of climate experiments with general circulation models. J. Atmos. Sci.,33, 405–412.

  • ——, W. M. Washington, and S. H. Schneider, 1976: Testing the statistical significance of the response of the NCAR general circulation model to North Pacific Ocean surface temperature anomalies. J. Atmos. Sci.,33, 413–423.

  • Corby, G. A., A. Gilchrist, and R. L. Newson, 1972: A general circulation model of the atmosphere suitable for long period integrations. Quart. J. Roy. Meteor. Soc.,98, 809–832.

  • Cubasch, U., 1985: The mean response of the ECWMF global model to the El Niño anomaly in extended range prediction experiments. Atmos.–Ocean,23, 43–66.

  • Delworth, T., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate,6, 1993–2011.

  • Deutsches Klimarechenzentrum, Modellbetreuungsgruppe, 1994: The ECHAM3 Atmospheric General Circulation Model. Tech. Rep. 6, 182 pp. [Available from Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146 Hamburg, Germany.].

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus,1, 33–52.

  • Egger, J., 1977: On the linear theory of the atmospheric response to sea surface temperature anomalies. J. Atmos. Sci.,34, 603–614.

  • Eliasen, E., 1982a: Climate modelling using an equivalent meridional circulation. Tellus,34, 228–244.

  • ——, 1982b: A seasonal global climate model with an equivalent meridional atmospheric circulation. Tellus,34, 514–525.

  • Gilchrist, A., 1979: The Meteorological Office 5-layer general circulation model. Report on the JOC Study Conference on Climate Models: Performance, intercomparison and sensitivity studies. GARP/JOC Publ. Series 22/I. WMO/ISCU, 60 pp. [Available from World Meteorological Organization, Case Postale 5, CH- 1211 Geneva 20, Switzerland.].

  • Hannoschöck, G., 1984: A multivariate signal-to-noise analysis of the response of an atmospheric circulation model to sea surface temperature anomalies. Ph.D. dissertation, Hamburger Geophysikalische Einzelschriften, 100 pp. [Available from Max-Planck- Institut für Meteorologie, Bundesstr. 55, Hamburg 20146, Germany.].

  • Hense, A., R. Glowienka-Hense, H. von Storch, and U. Stähler, 1990:Northern Hemisphere atmospheric response to changes of Atlantic Ocean SST on decadal time scales: A GCM experiment. Climate Dyn.,4, 157–174.

  • Hoskins, B. J., and A. J. Simmons, 1975: A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc.,101, 637–655.

  • ——, and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci.,38, 1179–1196.

  • Houghton, D. D., J. E. Kutzbach, M. McClintock, and D. Suchman, 1974: Response of a general circulation model to a sea temperature perturbation. J. Atmos. Sci.,31, 857–868.

  • James, I. N., and J. P. Dodd, 1993: A simplified global circulation model, user’s manual. University of Reading, 42 pp. [Available from Dept. of Meteorology, University of Reading, Reading RG6 2AU, United Kingdom.].

  • Kuo, H. L., 1949: Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteor.,6, 247–330.

  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate,7, 141–157.

  • ——, and N.-C. Lau, 1992: The general circulation model response to a North Pacific SST anomaly: Dependence on timescale and pattern polarity. J. Climate,5, 271–283.

  • ——, and I. M. Held, 1996: Equilibrium atmospheric response to North Atlantic SST anomalies. J. Climate,9, 1208–1220.

  • Kutzbach, J. E., R. M. Chervin, and D. D. Houghton, 1977: Response of the NCAR general circulation model to prescribed changes in ocean surface temperature. Part I: Mid-latitude changes. J. Atmos. Sci.,34, 1200–1213.

  • Manabe, S., and R. J. Stouffer, 1988: Two stable equilibria of a coupled ocean–atmosphere model. J. Climate,1, 841–866.

  • Oerlemans, J., and H. M. Van den Dool, 1978: Energy balance climate models: Stability experiments with a refined albedo and updated coefficients for infrared emission. J. Atmos. Sci.,35, 371–381.

  • Oort, A. H., 1983: Global atmospheric circulation statistics, 1958–1973. NOAA Professional Paper 14, U.S. Department of Commerce, Rockville, MD, 180 pp. [Available from U.S. Government Printing Office, Washington, DC 20402.].

  • Palmer, T. N., and Z. Sun, 1985: A modelling and observational study of the relationship between sea surface temperature in the north- west Atlantic and atmospheric general circulation. Quart. J. Roy. Meteor. Soc.,111, 947–975.

  • Peng, S., L. A. Mysak, H. Ritchie, J. Derome, and B. Dugas, 1995:The difference between early and midwinter atmospheric response to sea surface temperature anomalies in the northwest Atlantic. J. Climate,8, 137–157.

  • Pitcher, E. J., M. L. Blackmon, G. T. Bates, and S. Munoz, 1988: The effect of North Pacific sea surface temperature anomalies on the January climate of a general circulation model. J. Atmos. Sci.,45, 173–188.

  • Preisendorfer, R. W., and T. P. Barnett, 1983: Numerical model-reality intercomparison tests using small-sample statistics. J. Atmos. Sci.,40, 1884–1896.

  • Roads, J. O., 1980: Climatic-anomaly experiments in middle latitudes. Tellus,32, 410–427.

  • Roeckner E., and Coauthors, 1992: Simulation of the present-day climate with the Echam Model: Impact of model physics and resolution. Max-Planck-Institut für Meteorologie Rep. 93, Hamburg, Germany, 172 pp. [Available from Max-Planck-Institut für Meteorologie, Bundesstr. 55, D-20146 Hamburg, Germany.].

  • Rowntree, P. R., 1972: The influence of tropical east Pacific Ocean temperatures on the atmosphere. Quart. J. Roy. Meteor. Soc.,111, 947–975.

  • Sausen, R., 1989: A “poor man’s atmosphere”—A radiative-convective model with advection by prescribed winds, Large Scale Atmospheric Modelling. Meteorologisches Institut Tech. Rep. 2, Universität Hamburg, 19 pp. [Available from Meteorologisches Institut, Universität Hamburg, Bundesstr. 55, D-20146 Hamburg, Germany.].

  • Shukla, J., and M. Wallace, 1983: Numerical simulations of the atmospheric response to equatorial Pacific sea surface temperature anomalies. J. Atmos. Sci.,40, 1613–1630.

  • von Storch, H., D. Schriever, K. Arpe, G. W. Branstator, R. Legnani, and U. Ulbrich, 1993: Numerical experiments on the atmospheric response to cold equatorial Pacific conditions (“La Niña”) during northern summer. Max-Planck-Institut für Meteorologie Rep. 106, Hamburg, Germany, 21 pp. [Available from Max-Planck- Institut für Meteorologie, Bundesstr. 55, D-20146 Hamburg, Germany.].

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 235 25 1
PDF Downloads 37 16 0