• Abe-Ouchi, A., 1993: Ice sheet response to climatic changes: A modelling approach. Zürcher Geogr. Schr.,54, 134 pp.

  • Blatter, H., 1991: Effect of climate on the cryosphere. Zürcher Geogr. Schr.,41, 98 pp.

  • ——, and K. Hutter, 1991: Polythermal conditions in arctic glaciers. J. Glaciol.,37, 261–269.

  • Braithwaite, R. J., and O. B. Olesen, 1989: Calculation of glacier ablation from air temperature, West Greenland. Glacier Fluctuations and Climatic Change, J. Oerlemans, Ed., Kluwer, 219–233.

  • Budd, W. F., and I. N. Smith, 1982: Large-scale numerical modelling of the Antarctic ice sheet. Ann. Glaciol.,3, 42–49.

  • Calov, R., 1994: Das thermomechanische Verhalten des grönländischen Eisschildes unter der Wirkung verschiedener Klimaszenarien—Antworten eines theoretisch-numerischen Modells. Ph.D. dissertation, Institut für Mechanik, Technische Hochschule Darmstadt, 171 pp. [Available from Institut für Mechanik, Technische Hochschule Dannstadt, Hochschulstr. 1, D-64289 Dannstadt, Germany.].

  • ——, and K. Hutter, 1996: The thermomechanical response of the Greenland ice sheet to various climate scenarios. Climate Dyn.,12, 243–260.

  • Fabré, A., A. Letréguilly, C. Ritz, and A. Mangeney, 1995: Greenland under changing climates: Sensitivity experiments with a new three-dimensional ice sheet model. Ann. Glaciol.,21, 1–7.

  • Fastook, J. L., and J. E. Chapman, 1989: A map-plane finite-element model: Three modeling experiments. J. Glaciol.,35, 48–52.

  • Fowler, A. C., and D. A. Larson, 1978: On the flow of polythermal glaciers, Part I, Model and preliminary analysis. Proc. Roy. Soc. London, Ser. A,363, 217–242.

  • Funk, M., K. Echelmeyer, and A. Iken, 1994: Mechanisms of fast flow in Jacobshavns Isbræ, West Greenland. Part II: Modeling of englacial temperatures. J. Glaciol.,40, 569–585.

  • Greve, R., 1995: Thermomechanisches Verhalten polythermer Eisschilde—Theorie, Analytik, Numerik. Ph.D. dissertation, Institut für Mechanik, Technische Hochschule Dannstadt, 226 pp. [Available from Shaker Verlag, Postfach 1290, D-52013 Aachen, Germany.].

  • ——, 1997: A continuum-mechanical formulation for shallow polythermal ice sheets. Philos. Trans. Roy. Soc. London, Ser. A, in press.

  • ——, and K. Hutter, 1995: Polythermal three-dimensional modelling of the Greenland Ice Sheet with varied geothermal heat flux. Ann. Glaciol.,21, 8–12.

  • Herterich, K., 1988: A three-dimensional model of the Antarctic Ice Sheet. Ann. Glaciol.,11, 32–35.

  • Hutter, K., 1982: A mathematical model of polythermal glaciers and ice sheets. J. Geophys. Astrophys. Fluid Dyn.,21, 201–224.

  • ——, 1983: Theoretical Glaciology; Material Science of Ice and the Mechanics of Glaciers and Ice Sheets. D. Reidel, 510 pp.

  • ——, 1993: Thermo-mechanically coupled ice-sheet response. Cold, polythermal, temperate. J. Glaciol.,39, 65–86.

  • ——, H. Blatter, and M. Funk, 1988: A model computation of moisture content in polythermal glaciers. J. Geophys. Res.,93 (B10), 12 205–12 214.

  • Huybrechts, P., 1992: The Antarctic Ice Sheet and environmental change: A three-dimensional modelling study. Ber. Polarforschung,99, 241 pp.

  • ——, 1994: The present evolution of the Greenland ice sheet: An assessment by modelling. Global Planet. Change,9, 39–51.

  • ——, A. Letréguilly, and N. Reeh, 1991: The Greenland Ice Sheet and greenhouse warming. Palaeogeogr., Palaeoclimatol., Palaeoecol.,89, 399–412.

  • Jenssen, D., 1977: A three-dimensional polar ice-sheet model. J. Glaciol.,18, 373–389.

  • Johnsen, S. J., and Coauthors, 1992: Irregular glacial interstadials recorded in a new Greenland ice core. Nature,359, 311–313.

  • Lee, W. H. K., 1970: On the global variations of terrestrial heat flow. Phys. Earth Planet. Inter.,2, 332–341.

  • Letréguilly, A., P. Huybrechts, and N. Reeh, 1991a: Steady-state characteristics of the Greenland Ice Sheet under different climates. J. Glaciol.,37, 149–157.

  • ——, N. Reeh, and P. Huybrechts, 1991b: The Greenland Ice Sheet through the last glacial–interglacial cycle. Palaeogeogr., Palaeoclimatol., Palaeoecol.,90, 385–394.

  • Lliboutry, L., and P. Duval, 1985: Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies. Ann. Geophys.,3, 207–224.

  • Mahaffy, M. W., 1976: A three-dimensional numerical model of ice sheets: Test on the Barnes ice cap, Northwest Territories. J. Geophys. Res.,81 (6), 1059–1066.

  • Morland, L. W., 1984: Thermo-mechanical balances of ice sheet flows. J. Geophys. Astrophys. Fluid Dyn.,29, 237–266.

  • Müller, I., 1985: Thermodynamics. Pitman Advanced Publishing Program, 521 pp.

  • Oerlemans, J., 1982: Response of the Antarctic Ice Sheet to a climatic warming: A model study. J. Climatol.,2, 1–11.

  • Ohmura, A., 1987: New temperature distribution maps for Greenland. Z. Gletscherkd. Glazialgeol.,23, 1–45.

  • ——, and N. Reeh, 1991: New precipitation and accumulation maps for Greenland. J. Glaciol.,37, 140–148.

  • Paterson, W. S. B., 1991: Why ice-age ice is sometimes “soft.” Cold Reg. Sci. Technol.,20, 75–98.

  • ——, 1994: The Physics of Glaciers. 3d ed. Pergamon Press, 480 pp.

  • Reeh, N., 1991: Parameterization of melt rate and surface temperature on the Greenland Ice Sheet. Polarforschung,59, 113–128.

  • Schönwiese, C.-D., 1992: Klima im Wandel. Tatsachen, Irrtümer, Risiken. Deutsche Verlags-Anstalt, 223 pp.

  • Svendsen, B., and K. Hutter, 1996: A continuum approach for modelling induced anisotropy in glaciers and ice sheets. Ann. Glaciol.,23, 262–269.

  • ——, and ——, 1997: A continuum model for induced anisotropy in polycrystals. Quart. J. Mech. Appl. Math., in press.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 509 236 15
PDF Downloads 208 120 4

Application of a Polythermal Three-Dimensional Ice Sheet Model to the Greenland Ice Sheet: Response to Steady-State and Transient Climate Scenarios

View More View Less
  • 1 Department of Mechanics, Technische Hochschule Darmstadt, Darmstadt, Germany
Restricted access

Abstract

Steady-state and transient climate-change computations are performed with the author’s three-dimensional polythermal ice sheet model Simulation Code for Polythermal Ice Sheets for the Greenland Ice Sheet. The distinctive feature of this model is the detailed consideration of the basal temperate ice layer, in which the water content and its impact on the ice viscosity are computed; its transition surface to the cold ice region is accounted for by continuum-mechanical jump conditions on this interface. The simulations presented include steady states subject to a range of physical parameters and two different climates (present and glacial conditions), as well as three types of transient scenarios, namely (i) sinusoidal Milanković-period forcing, (ii) paleoclimatic forcing from the Greenland Ice Core Project core reconstruction, and (iii) future greenhouse warming forcing.

Corresponding author address: Dr. Ralf Greve, Department of Mechanics, Technische Hochschule Darmstadt, D-64289 Darmstadt, Germany.

Email: greve@mechanik.th-darmstadt.de

Abstract

Steady-state and transient climate-change computations are performed with the author’s three-dimensional polythermal ice sheet model Simulation Code for Polythermal Ice Sheets for the Greenland Ice Sheet. The distinctive feature of this model is the detailed consideration of the basal temperate ice layer, in which the water content and its impact on the ice viscosity are computed; its transition surface to the cold ice region is accounted for by continuum-mechanical jump conditions on this interface. The simulations presented include steady states subject to a range of physical parameters and two different climates (present and glacial conditions), as well as three types of transient scenarios, namely (i) sinusoidal Milanković-period forcing, (ii) paleoclimatic forcing from the Greenland Ice Core Project core reconstruction, and (iii) future greenhouse warming forcing.

Corresponding author address: Dr. Ralf Greve, Department of Mechanics, Technische Hochschule Darmstadt, D-64289 Darmstadt, Germany.

Email: greve@mechanik.th-darmstadt.de

Save