• André, J. C., and Coauthors, 1988: Evaporation over land surfaces: First results from HAPEX-MOBILHY special observing period. Ann. Geophys.,6, 477–492.

  • Brown, J. F., T. R. Loveland, J. W. Merchant, B. C. Reed, and D. O. Ohlen, 1993: Using multisource data in global land-cover characterization: Concepts, requirements, and methods. Photogramm. Eng. Remote Sens.,59, 977–987.

  • Cannell, M. G. R., and R. I. Smith, 1986: Climatic warming, spring budbursts, and frost damage on trees. J. Appl. Ecol.,23, 177–191.

  • Cihlar, J., L. St.-Laurent, and J. A. Dyer, 1991: Relation between the normalized difference vegetation index and ecological variables. Remote Sens. Environ.,35, 279–298.

  • Dajoz, R., 1971: Précis d’Ecologie. 2d ed. Dunod, 434 pp.

  • Davenport, M. L., and S. E. Nicholson, 1993: On the relation between rainfall and the Normalized Difference Vegetation Index for diverse vegetation types in East Africa. Int. J. Remote Sens.,14, 2369–2389.

  • DeFries, R., M. Hansen, and J. Townshend, 1995: Global discrimination of land cover types from metrics derived from AVHRR Pathfinder data. Remote Sens. Environ.,54, 209–222.

  • Di, L., D. C. Rundquist, and L. Han, 1994: Modelling relationships between NDVI and precipitation during vegetative growth cycles. Int. J. Remote Sens.,15, 2121–2136.

  • Dirmeyer, P. A., 1994: Vegetation stress as a feedback mechanism in midlatitude drought. J. Climate,7, 1463–1483.

  • Faizoun, C. A., A. Podaire, and G. Dedieu, 1994: Monitoring of sahelian aerosol and atmospheric water vapor content characteristics from sun photometer measurements. J. Appl. Meteor.,33, 1291–1303.

  • Fontès, J., J. P. Gastellu-Etchegorry, O. Amram, and G. Flouzat, 1995: A global phenological model of the African continent. Ambio,24, 297–303.

  • Frankie, G. W., H. G. Baker, and P. A. Opler, 1974: Tropical plant phenology: Applications for studies in community ecology. Phenology and Seasonality Modeling, H. Lieth, Ed., Springer, 287–298.

  • French, N., and R. H. Sauer, 1974: Phenological studies and modeling in grasslands. Phenology and Seasonality Modeling, H. Lieth, Ed., Springer, 227–236.

  • Fritschen, L. J., and P. Qian, 1992: Variation in energy balance components from six sites in a native prairie for three years. J. Geophys. Res.,97, 18 651–18 661.

  • Garratt, J. R., 1993: Sensitivity of climate simulations to land-surface and atmospheric boundary-layer treatments—A review. J. Climate,6, 419–449.

  • Gill, D. S., and B. E. Mahall, 1986: Quantitative phenology and water relations of an evergreen and a deciduous chaparral shrub. Ecol. Monogr.,56, 127–143.

  • Goutorbe, J.-P., and Coauthors, 1994: HAPEX-Sahel: A large-scale study of land-atmosphere, interactions in the semi-arid tropics. Ann. Geophys.,12, 53–64.

  • Goward, S. N., 1989: Satellite bioclimatology. J. Climate,2, 710–720.

  • Graetz, R. D., L. Olsson, and M. A. Wilson, 1995: Interpreting a 9 year time-series of satellite observations for the Australian continent. Proc. Satellite Colloquium of the 10th Int. Congress of Photosynthesis, Montpellier, France, ISPRS, 395–406.

  • Gutman, G. G., 1994: Global data on land surface parameters from NOAA AVHRR for use in numerical climate models. J. Climate,7, 669–680.

  • Holben, B. N., T. F. Eck, and R. S. Fraser, 1991: Temporal and spatial variability of aerosol optical depth in the Sahel region in relation to vegetation remote sensing. Int. J. Remote Sens.,12, 1147–1163.

  • Hopp, R. J., 1974: Plant phenology observation networks. Phenology and Seasonality Modeling, H. Lieth, Ed., Springer, 25–43.

  • Hunter, A. F., and M. J. Lechowicz, 1992: Predicting the timing of budburst in temperate trees. J. Appl. Ecol.,29, 597–604.

  • Justice, C. O., J. R. G. Townshend, B. N. Holben, and C. J. Tucker, 1985: Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens.,6, 1271–1318.

  • ——, T. F. Eck, D. Tanré, and B. N. Holben, 1991: The effect of water vapour on the normalized difference vegetation index derived for the Sahelian region from NOAA AVHRR data. Int. J. Remote Sens.,12, 1165–1187.

  • Kaduk, J., M. Heimann, 1996: A prognostic phenology scheme for global terrestrial carbon cycle models. Climate Res.,6, 1–19.

  • Kerr, Y. H., J. Imbernon, G. Dedieu, O. Hautecoeur, J. P. Lagouarde, and B. Seguin, 1989: NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring. Int. J. Remote Sens.,10, 847–854.

  • Kidwell, K. B., 1990: GVI user’s guide. NOAA NESDIS Tech. Rep., 126 pp. [Available from NOAA/SAA User Assistance, NCDC, Climate Services Division, 151 Patten Ave., Asheville, NC 28801-5001.].

  • Kramer, K., 1994: Selecting a model to predict the onset of growth of Fagus sylvatica. J. Appl. Ecol.,31, 172–181.

  • Lieth, H., 1974: Phenology and Seasonality Modeling. Springer-Verlag, 444 pp.

  • London, J., R. D. Bojkov, S. Oltsman, and J. I. Kelley, 1976: Atlas of the global distribution of total ozone July 1957–June 1967. NCAR/TN-113+STR, 276 pp. [NTIS PB-258882/AS.].

  • Loveland, T. R., J. W. Merchant, D. O. Ohlen, and J. F. Brown, 1991: Development of a land-cover characteristics database for the conterminous U.S. Photogramm. Eng. Remote Sens.,57, 1453–1463.

  • ——, ——, J. F. Brown, D. O. Ohlen, B. C. Reed, P. Olson, and J. Hutchinson, 1995: Seasonal land-cover regions of the United States. Ann. Assoc. Amer. Geographers,85, 339–355.

  • Lüdeke, M. K. B., and Coauthors, 1994: The Frankfurt Biosphere Model. A global process oriented model for the seasonal and longterm CO2 exchange between terrestrial ecosystems and the atmosphere. Part 1: Model description and illustrating results for the vegetation types cod deciduous and boreal forests. Climate Res.,4, 143–166.

  • ——, P. Ramge, and G. H. Kohlmaier, 1996: The use of satellite NDVI data for the validation of global vegetation phenology models: Application to the Frankfurt Biosphere Model. Ecol. Model.,91, 255–270.

  • Matthews, E., 1983: Global vegetation and land use: New high-resolution data bases for climate studies. J. Climate Appl. Meteor.,22, 474–500.

  • Medina, E., 1983: Adaptations of tropical trees to moisture stress. Ecosystems of the World, 14A: Tropical Rain Forest Ecosystems, Structure and Function, F. B. Gollet, Ed., Elsevier Scientific Publishing, 225–238.

  • Menaut, J. C., 1983: The vegetation of African savannas. Tropical Savannas, F. Bourlière, Ed., Ecosystems of the World, Vol. 13, Elsevier, 109–149.

  • Mooney, H. A., D. J. Parsons, and J. Kummerow, 1974: Plant development in Mediterranean climates. Phenology and Seasonality Modeling, H. Lieth, Ed., Springer, 255–265.

  • Murray, M. B., M. G. R. Cannell, and R. I. Smith, 1989: Date of budburst of fifteen tree species in Britain following climatic warming. J. Appl. Ecol.,26, 693–700.

  • Nemani, R., and S. Running, 1995: Land cover characterization using multi-temporal red, near-ir and thermal-ir data from NOAA/AVHRR. Ecol. Appl., in press.

  • ——, and ——, 1996: Implementation of a hierrarchical global vegetation classification in ecosystem function models. J. Vegetation Sci.,7.3, 337–346.

  • Nicholson, S. E., and T. J. Farrar, 1994: The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. Part I: NDVI response to rainfall. Remote Sens. Environ.,50, 107–120.

  • ——, M. L. Davenport, and A. R. Malo, 1990: A comparison of the vegetation response to rainfall in the Sahel and East Africa, using NDVI from NOAA AVHRR. Climate Change,17, 209–241.

  • Nienstaedt, H., 1974: Genetic variation in some phenological characteristics of forest trees. Phenology and Seasonality Modeling, H. Lieth, Ed, Springer, 389–401.

  • Nizinski, J. J., and B. Saugier, 1988: A model of leaf budding and development for a mature quercus forest. J. Appl. Ecol.,25, 643–652.

  • Oort, A. H., 1983: Global atmospheric circulation statistics: 1958–1973. NOAA Professional Paper 14, 180 pp. plus microfiches.

  • Ozenda, P., 1982: Les Végétaux dans la Biosphere. Doin Editeurs, 431 pp.

  • Rahman, H., and G. Dedieu, 1994: SMAC: A simplified method for atmospheric correction of satellite measurements in the solar spectrum. Int. J. Remote Sens.,15, 123–143.

  • Raupach, M. R., 1995: Vegetation–atmosphere interaction and surface conductance at leaf, canopy, and regional scales. Agric. For. Meteor.,73, 151–179.

  • Reed, B. C., J. F. Brown, D. VanderZee, T. R. Loveland, J. W. Merchant, and D. O. Ohlen, 1994: Measuring phenological variability from satellite imagery. J. Vegetation Sci.,5, 703–714.

  • Rouse, J. W., R. H. Haas, J. A. Schell, D. W. Deering, and J. C. Harlan, 1974: Monitoring the vernal advancement of retrogradation of natural vegetation. NASA/GSFC Type III Final Rep., 371 pp.

  • Running, S. W., T. R. Loveland, and L. L. Pierce, 1994: A vegetation classification logic based on remote sensing for use in global biogeochemical models. Ambio,23, 77–81.

  • Saugier, B., and N. Katerji, 1991: Some plant factors controlling evapotranspiration. Agric. For. Meteor.,54, 263–277.

  • Schultz, P. A., and M. S. Halpert, 1993: Global correlation of temperature, NDVI, and precipitation. Adv. Space Res.,13, 277–280.

  • Schwartz, M. D., 1990: Detecting the onset of spring: A possible application of phenological models. Climate Res.,1, 23–29.

  • ——, 1992: Phenology and springtime surface-layer change. Mon. Wea. Rev.,120, 2570–2578.

  • ——, and G. A. Marotz, 1986: An approach to examining regional atmosphere–plant interactions with phenological data. J. Biogeography,13, 551–560.

  • ——, and T. R. Karl, 1990: Spring phenology: Nature’s experiment to detect the effect of “green-up” on surface maximum temperatures. Mon. Wea. Rev.,118, 883–890.

  • Sellers, P. J., and F. G. Hall, 1992: FIFE in 1992: Results, scientific gains, and future research directions. J. Geophys. Res.,97, 19 091–19 109.

  • ——, Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A Simple Biosphere Model (SiB) for use within general circulation models. J. Atmos. Sci.,43, 505–530.

  • ——, C. J. Tucker, G. J. Collatz, S. O. Los, C. O. Justice, D. A. Dazlich, and D. A. Randall, 1994: A global 1° by 1° NDVI data set for climate studies. Part 2: The generation of global fields of terrestrial biophysical parameters from the NDVI. Int. J. Remote Sens.,15, 3519–3545.

  • Singh, L., and J. S. Singh, 1992: Phenology and seasonally dry tropical forest. Curr. Sci.,63, 684–689.

  • Spangler, W. M., and R. L. Jenne, 1990: World monthly surface station climatology. Computer Tape Documentation Rev. 2192, National Center for Atmospheric Research, Boulder, CO, 74 pp. [Available from Scientific Computing Division, NCAR, Data Support Section, P.O. Box 3000, Boulder, CO 80307.].

  • Spanner, M. A., L. L. Pierce, S. W. Running, and D. L. Peterson 1990: The seasonality of AVHRR data of temperate coniferous forests: Relationship with Leaf Area Index. Remote Sens. Environ.,33, 97–112.

  • Tanré, D., B. N. Holben, and Y. J. Kaufman, 1992, Atmospheric correction algorithms for NOAA-AVHRR products: Theory and application. IEEE Trans. Geosci. Remote Sens.,30, 231–248.

  • Taylor, F. G., Jr., 1974: Phenodynamics of production in a Mesic deciduous forest. Phenology and Seasonality Modeling, H. Lieth, Ed., Springer, 237–254.

  • Teillet, P., and B. Holben, 1994: Towards operational radiometric calibration of NOAA-AVHRR imagery in the visible and infrared channels. Canadian J. Remote Sens.,20, 1–10.

  • Townshend, J. R. G., 1994: Global data sets for land applications from the Advanced Very High Resolution Radiometer: An introduction. Int. J. Remote Sens.,15, 3319–3332.

  • Tucker, C. J., I. Y. Fung, C. D. Keeling, and R. H. Gammon, 1981: Relationship between atmospheric CO2 variations and a satellite-derived vegetation index. Nature,319, 195–199.

  • Verma, S. B., J. Kim, and R. J. Clement, 1992: Momentum, water vapor, and carbon dioxide exchanges at a centrally located prairie site during FIFE. J. Geophys. Res.,97, 18 629–18 639.

  • Viovy, N., 1990: Etude spatiale de la biosphère: Integration de modèles écologiques et de mesures de télédétection. Ph.D. dissertation, Institut National Polytechnique de Toulouse, 213 pp. [Available from INPT-1, Place des Hauts Murats, 31000 Toulouse, France.].

  • ——, O. Arino, and A. Belward, 1992: The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time-series. Int. J. Remote Sens.,13, 1585–1590.

  • Woodward, F. I., 1987: Climate and Plant Distribution. Cambridge University Press, 174 pp.

  • Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate,4, 345–364.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 551 247 13
PDF Downloads 421 208 13

Global-Scale Assessment of Vegetation Phenology Using NOAA/AVHRR Satellite Measurements

View More View Less
  • 1 Centre d’Etudes Spatiales de la Biosphère (CNES/CNRS/UPS), Toulouse, France
Restricted access

Abstract

Phenology and associated canopy development exert a strong control over seasonal energy and mass exchanges between the earth’s surface and the atmosphere. Satellite measurements are used to assess main phenological stages of the vegetation at the global scale. The authors propose a method to derive the start, the maximum, the end, and the length of the vegetation cycle, based on the analysis of temporal series of weekly vegetation index, at a resolution of 1° lat × 1° long for year 1986. Global maps of these characteristics of the vegetation are presented, and their zonal distribution is discussed. The start of the vegetation cycle has been related to temperature sums in the case of temperate deciduous forest and to precipitation in the case of savannahs. It is concluded that satellite measurements offer interesting perspectives for global-scale quantitative phenology modeling.

* Additional affiliation: Laboratoire de Modélisation du Climat et de l’Environnement (CEA/DSM), Gif sur Yvette, France.

Corresponding author address: Dr. Sophie Moulin, CESBIO, 18, Avenue E. Belin, BPI 2801, Toulouse Cedex 4, France, 31401.

Email: sophie.moulin@cesbio.cnes.fr

Abstract

Phenology and associated canopy development exert a strong control over seasonal energy and mass exchanges between the earth’s surface and the atmosphere. Satellite measurements are used to assess main phenological stages of the vegetation at the global scale. The authors propose a method to derive the start, the maximum, the end, and the length of the vegetation cycle, based on the analysis of temporal series of weekly vegetation index, at a resolution of 1° lat × 1° long for year 1986. Global maps of these characteristics of the vegetation are presented, and their zonal distribution is discussed. The start of the vegetation cycle has been related to temperature sums in the case of temperate deciduous forest and to precipitation in the case of savannahs. It is concluded that satellite measurements offer interesting perspectives for global-scale quantitative phenology modeling.

* Additional affiliation: Laboratoire de Modélisation du Climat et de l’Environnement (CEA/DSM), Gif sur Yvette, France.

Corresponding author address: Dr. Sophie Moulin, CESBIO, 18, Avenue E. Belin, BPI 2801, Toulouse Cedex 4, France, 31401.

Email: sophie.moulin@cesbio.cnes.fr

Save