• Bates, G. T., F. Giorgi, and S. W. Hostetler, 1993: Toward the simulation of the effects of the Great Lakes on climate. Mon. Wea. Rev.,121, 1373–1387.

  • Beadle, L. C., 1974: The Inland Water of Tropical Africa: An Introduction to Tropical Limnology. Longman, 365 pp.

  • Benson, L. V., and R. S. Thompson, 1987: The physical record of lakes in the Great Basin. North America and Adjacent Oceans During the Last Deglaciation, W. F. Ruddiman and H. E. Wright, Eds., Geological Society of America, 241–260.

  • Bonan, G. B., 1995: Sensitivity of a GCM to inclusion of inland water surfaces. J. Climate,8, 2691–2704.

  • Bowler, J. M., 1981: Australian salt lakes: A paleohydrological approach. Hydrobiologia,82, 431–444.

  • Butzer, K. W., 1967: Climatic change in the arid zones of Africa during early to mid-Holocene times. Proc. of Symp. on World Climate from 8000 to 0 B.C., London, United Kingdom, Royal Meteorological Society, 72–83.

  • Carpenter, D. M., 1984: An introduction to Great Salt Lake effect snowfall. Problems of and Prospects for Predicting Great Salt Lake Levels, P. A. Kay and H. F. Diaz, Eds., Center Public Affairs Administration, University of Utah, 155–165.

  • Cogley, J. G., 1989: Runoff from the world’s landmasses: Amounts and uncertainties at 2-degree resolution. Trent Climate Note 89-3, 25 pp. [Available from Dept. of Geography, Trent University, Peterborough, ON K9J 7B8, Canada.].

  • ——, 1991: GGHYDRO—Global Hydrological Data Release 2.0. Trent Climate Note 91-1, 12 pp. [Available from Dept. of Geography, Trent University, Peterborough, ON K9J 7B8, Canada.].

  • Durand, A., 1982: Oscillations of Lake Chad over the past 50,000 years: New data and new hypothesis. Palaeogeogr., Palaeoclimatol., Palaeoecol.,39, 37–53.

  • Ebert, E. E., and J. A. Curry, 1993: An intermediate one-dimensional thermodynamic sea ice model for investigating ice–atmosphere interactions. J. Geophys. Res.,98(C), 10 085–10 109.

  • Eichenlaub, V. L., 1979: Weather and Climate of the Great Lakes Region. University of Notre Dame Press, 335 pp.

  • Foley, J. A., 1994: The sensitivity of the terrestrial biosphere to climatic change: A simulation of the middle Holocene. Global Biogeochem. Cycle,8, 505–525.

  • Fontes, J. C., F. Gasse, Y. Callot, J.-C. Plaziat, P. Carbonel, P. A. Dupeuple, and I. Kaczmarska, 1985: Freshwater to marine-like environment from Holocene lakes in northern Sahara. Nature,317, 608–610.

  • Harrison, S. P., and S. E. Metcalfe, 1985: Variations in lake levels during the Holocene in North America: An indicator of changes in the atmospheric circulation patterns. Geogr. Phys. Quat.,39, 141–150.

  • ——, and J. Dodson, 1993: Climates of Australia and New Guinea since 18,000 yr BP. Global Climates Since the Last Glacial Maximum, H. E. Wright Jr., J. E. Kutzbach, P. J. T. Webb III, F. A. Street-Perrott, W. F. Ruddiman, and P. J. Bartlein, Eds., University of Minnesota Press, 265–293.

  • ——, C. I. Prentice, and J. Guiot, 1993: Climatic control on lake-level changes in Europe. Climate Dyn.,8, 189–200.

  • Haynes, C. V., Jr., 1987: Holocene migration rates of the Sudano–Sahelian wetting front, Arba’in desert, eastern Sahara. Prehistory of Arid North Africa, A. H. Close, Ed., Southern Methodist University Press, 69–84.

  • ——, C. H. Eyles, L. A. Pavlish, J. C. Ritchie, and M. Rybak, 1989: Holocene palaeoecology of the eastern Sahara; Selima Oasis. Quat. Sci. Rev.,8, 109–136.

  • Henderson-Sellers, A., and A. J. Pitman, 1992: Land-surface schemes for future climate models: Specification, aggregation, and heterogeneity. J. Geophys. Res.,97(D), 2687–2696.

  • Hostetler, S. W., and F. Giorgi, 1992: Use of a regional atmospheric model to simulate lake–atmosphere feedbacks associated with Pleistocene lakes Lahontan and Bonneville. Climate Dyn.,7, 39–44.

  • ——, G. T. Bates, and F. Giorgi, 1993: Interactive coupling of a lake thermal model with a regional climate model. J. Geophys Res.,98, 5045–5052.

  • ——, F. Giorgi, G. T. Bates, and P. J. Bartlein, 1994: Lake–atmosphere feedbacks associated with paleolakes Bonneville and Lahontan. Science,263, 665–668.

  • Huggins, L. F., and J. R. Burney, 1982: Surface runoff, storage, and routing. Hydrologic Modeling of Small Watersheds, C. T. Haan, Ed., American Society of Agricultural Engineering, 165–229.

  • Jolly, D., S. P. Harrison, B. Damnati, and R. Bonnefille, 1997: Simulated climate and biomes of Africa during the late Quaternary: Comparison with pollen and lake status data. Quat. Sci. Rev., in press.

  • Kutzbach, J. E., 1980: Estimates of past climate of paleolake Chad, North Africa, based on a hydrological energy-balance model. Quat. Res.,14, 210–223.

  • ——, 1981: Monsoon climate of the early Holocene: Climate experiment with the earth’s orbital parameters for 9000 years ago. Science,214, 59–61.

  • ——, and B. Otto-Bliesner, 1982: The sensitivity of the African–Asian monsoon climate to orbital parameter changes for 9000 years B.P. in a low resolution general circulation model. J. Atmos. Sci.,39, 1177–1188.

  • ——, and A. M. Ziegler, 1993: Simulation of late Permian climate and biome with an atmosphere–ocean model: Comparisons with observations. Philos. Trans. Roy. Soc. London, Ser. B,341, 327–340.

  • Leemans, R., and W. P. Cramer, 1990: The IIASA database for mean monthly values of temperature, precipitation, and cloudiness on a global terrestrial grid. IIASA Working Paper WP-90-41, 62 pp.

  • Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol.,10, 111–127.

  • Levis, S., M. T. Coe, and J. A. Foley, 1996: Hydrologic budget of a land surface model: A global application. J. Geophys. Res.,101D, 16 921–16 930.

  • Lézine, A.-M., 1986: Environnement et paleoenvironnement des niayes depuis 12,000 BP. Changements Globaux en Afrique Durant le Quaternaire: Passé-Présent-Futur (in French), H. Faure, L. Faure, and E. S. Diop, Eds., Editions de l’ORSTOM, 261–263.

  • ——, 1989: Late Quaternary vegetation and climate of the Sahel. Quat. Res.,32, 317–334.

  • ——, and J. Casanova, 1989: Pollen and hydrological evidence for the interpretation of past climates in tropical West Africa during the Holocene. Quat. Sci. Rev.,8, 45–55.

  • MacMillan, R. A., 1993: Measuring and modelling depression storage and ephemeral ponding at a farm scale in Alberta, Canada. Ph.D. dissertation, University of Edinburgh.

  • Marengo, J. A., J. R. Miller, G. L. Russell, C. E. Rosenzweig, and F. Abramopoulos, 1994: Calculations of river runoff in the GISS GCM: Impact of a new land-surface parameterization and river routing model on the hydrology of the Amazon River. Climate Dyn.,10, 349–361.

  • McCoy, W. D., and L. D. Williams, 1984: Application of an energy-balance model to the late Pleistocene Little Canyon glacier with implications regarding the paleohydrology of Lake Bonneville. Problems of and Prospects for Predicting Great Salt Lake Levels, P. A. Kay and H. F. Diaz, Eds., Center Public Affairs Administation, University of Utah, 40–53.

  • Mifflin, M. D., and M. M. Wheat, 1979: Pluvial lakes and estimated pluvial climates of Nevada. Nev. Bur. Mines Geol. Bull,94, 1–57.

  • Miller, J., G. Russell, and G. Caliri, 1994: Continental-scale river flow in climate models. J. Climate,7, 914–928.

  • Pachur, H.-J., and S. Kröppelin, 1987: Wadi Howar: Paleoclimatic evidence from an extinct river system in the southeastern Sahara. Science,237, 298–300.

  • ——, and P. Hoelzmann, 1991: Paleoclimatic implications of late Quaternary lacustrine sediments in western Nubia, Sudan. Quat. Res.,36, 257–276.

  • Parkinson, C. L., and W. M. Washington, 1979: A large-scale numerical model of sea ice. J. Geophys, Res.,84(C), 311–337.

  • Petit-Maire, N., 1986: Paleoclimates in the Sahara of Mali. Episodes,9, 7–16.

  • ——, and J. Riser, 1981: Holocene lake deposits and paleoenvironment in central Sahara, northeastern Mali. Palaeogeogr., Palaeoclimatol., Palaeoecol.,35, 45–61.

  • ——, and S. Kröppelin, 1991: Les climats holocènes du Sahara le long du Tropique du Cancer. Paléonvironments du Sahara. Lacs Holocènes à Taoudenni (Mali) (in French), N. Petit-Maire, Ed., Editions du CNRS, 205–210.

  • ——, J. Fabre, P. Carbonel, E. Schulz, and A.-M. Aucour, 1987: La dépression de Taoudenni (Sahara malien) à l’Holocene (in French). Géodynamique,2, 154–160.

  • ——, J. Riser, J. Fabre, M. Decoubert, J. Marchand, and B. Rond, 1988: Le Sahara à l’Holocene: Mali 1:1,000,000 (in French). Institut Géographique National.

  • ——, N. Page, and J. Marchand, 1993: Le Sahara à l’Holocene 1:5,000,000 (in French). Laboratoire de Géologie du Quaternaire.

  • Pias, J., 1970: Les formations sédimentaires tertiares et quaternaires de la cuvette Tchadienne et les sols qui en derivent. Mém. ORSTOM (in French), 43, 408 pp.

  • Pitman, A. J., 1991: A simple parameterization of sub-grid scale open water for climate models. Climate Dyn.,6, 99–112.

  • Pollard, D., and S. L. Thompson, 1995: Use of a land-surface-transfer scheme (LSX) in a global climate model (GENESIS): The response to doubling stomatal resistance. Global Planet. Change,10, 129–161.

  • Rand McNally, 1989: The New International Atlas. Rand McNally, 543 pp.

  • Schneider, J. L., 1967: Evolution du dernier lacustre et peuplements préhistoriques aux bas-pays du Tchad (in French). Bull. ASEQUA, 18–23.

  • Servant, M., and S. Servant-Vildary, 1980: L’environnement quaternaire du bassin du Tchad. The Sahara and the Nile: Quaternary Environments and Prehistoric Occupation in Northern Africa (in French), A. Martin, J. Williams, and H. Faure, Eds., Balkema, 133–162.

  • Snyder, C. T., and W. B. Langbein, 1962: The Pleistocene lake in Spring Valley, Nevada, and its climatic implications. J. Geophys. Res.,67, 2385–2394.

  • Street, F. A., 1979: Late Quaternary precipitation estimates for the Ziway–Shala Basin, southern Ethiopia. Palaeoecol. Africa,11, 135–143.

  • ——, 1980: The relative importance of climate and hydrogeological factors in influencing lake-level fluctuations. Palaeoecol. Africa,12, 137–158.

  • ——, and A. T. Grove, 1976: Environmental and climatic implications of late Quaternary lake-level fluctuations in Africa. Nature,261, 385–390.

  • ——, and ——, 1979: Global maps of lake-level fluctuations since 30,000 yr B.P. Quat. Res.,12, 83–118.

  • Street-Perrott, F. A., and N. Roberts, 1983: Fluctuations in closed-basin lakes as an indicator of past atmospheric circulation patterns. Variations in the Global Water Budget, F. A. Street-Perrott, M. Beran, and R. Ratcliffe, Eds., D. Reidel, 331–345.

  • ——, and S. P. Harrison, 1985: Lake levels and climate reconstruction. Paleoclimate Analysis and Modeling, A. Hecht, Ed., Wiley, 291–340.

  • ——, and R. A. Perrott, 1993: Holocene vegetation, lake levels and climates of Africa. Global Climates Since the Last Glacial Maximum, H. E. Wright Jr., J. E. Kutzbach, P. J. T. Webb III, F. A. Street-Perrott, W. F. Ruddiman, and P. J. Bartlein, Eds., University of Minnesota Press, 318–356.

  • ——, J. F. B. Mitchell, D. S. Marchand, and J. S. Brunner, 1990: Milankovitch and albedo forcing of the tropical monsoon: A comparison of geological evidence and numerical simulations for 9000 yBP. Trans. Roy. Soc. Edinburgh: Earth Sci.,81, 407–427.

  • Szesztay, K., 1974: Water balance and water level fluctuations of lakes. Int. Assoc. Hydrol. Sci. Bull.,19, 73–84.

  • Tetzlaff, G., and L. J. Adams, 1983: Present-day and early-Holocene evaporation of Lake Chad. Variations in the Global Water Budget, F. A. Street-Perrott, M. Beran, and R. Ratcliffe, Eds., D. Reidel, 347–360.

  • Thompson, S. L., and D. Pollard, 1995: A global climate model (GENESIS) with a land-surface transfer scheme (LSX). Part I: Present climate simulation. J. Climate,8, 732–761.

  • UNESCO, 1978: World Water Balance and Water Resources of the Earth. V. I. Korzun et al., Eds., UNESCO, 663 pp.

  • Vörösmarty, C. J., and B. Moore III, 1991: Modeling basin-scale hydrology in support of physical climate and global biogeochemical studies: An example using the Zambezi River. Surv. Geophys.,12, 271–311.

  • ——, ——, A. L. Grace, P. Gildea, J. M. Melillo, B. J. Peterson, E. B. Rastetter, and P. A. Steudler, 1989: Continental scale models of water balance and fluvial transport: An application to South America. Global Biogeochem. Cycles,3, 241–265.

  • ——, ——, ——, B. J. Peterson, E. B. Rastetter, and J. M. Melillo, 1991: Distributed parameter models to analyze the impact of human disturbance of the surface hydrology of a large tropical drainage basin in southern Africa. Proc. of Symp. on Hydrology for Water Management of Large River Basins, Vienna, Austria, IAHS, 233–244.

  • Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science an Introductory Survey. Academic Press, 467 pp.

  • World WeatherDisc, 1994: Worldwide airfield summaries. World WeatherDisc, WeatherDisc Associates.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 127 127 97
PDF Downloads 93 93 21

Simulating Continental Surface Waters: An Application to Holocene Northern Africa

View More View Less
  • 1 IES Center for Climatic Research and Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, Madison, Wisconsin
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A model (SWAM) to predict surface waters (lakes and wetlands) on the scale of atmospheric general circulation models is developed. SWAM is based on a linear reservoir hydrologic model and is driven by runoff, precipitation, evaporation, topography, and water transport directions.

SWAM is applied to the modern climate using observed estimates of the hydrologic variables and a 5′ × 5′ digital terrain model to represent topography. It simulates the surface water area of northern Africa (about 1% of the land area) in reasonable agreement with observed estimates (0.65%). A middle Holocene (6000 yr BP) simulation using the results of the GENESIS atmospheric general circulation model (AGCM) illustrates the sensitivity of the simulated surface waters to climatic changes and the model’s utility as a diagnostic tool for AGCMs. SWAM and GENESIS capture the general pattern of climate change 6000 yr BP. There is an increase in the simulated surface water area from about 1% to about 3% of the land area, including an increase in the area of Lake Chad by about five times and extensive surface water throughout northern Mali, consistent with observed patterns of surface water change during the Holocene. Limitations in the modeling of surface waters appear to result from the relatively coarse resolution of global elevation data.

Corresponding author address: Dr. Michael T. Coe, Center for Climatic Research, Institute for Environmental Studies, University of Wisconsin—Madison, 1225 West Dayton Street, Madison, WI 53706-1695.

Email: coe@phoebus.meteor.wisc.edu

Abstract

A model (SWAM) to predict surface waters (lakes and wetlands) on the scale of atmospheric general circulation models is developed. SWAM is based on a linear reservoir hydrologic model and is driven by runoff, precipitation, evaporation, topography, and water transport directions.

SWAM is applied to the modern climate using observed estimates of the hydrologic variables and a 5′ × 5′ digital terrain model to represent topography. It simulates the surface water area of northern Africa (about 1% of the land area) in reasonable agreement with observed estimates (0.65%). A middle Holocene (6000 yr BP) simulation using the results of the GENESIS atmospheric general circulation model (AGCM) illustrates the sensitivity of the simulated surface waters to climatic changes and the model’s utility as a diagnostic tool for AGCMs. SWAM and GENESIS capture the general pattern of climate change 6000 yr BP. There is an increase in the simulated surface water area from about 1% to about 3% of the land area, including an increase in the area of Lake Chad by about five times and extensive surface water throughout northern Mali, consistent with observed patterns of surface water change during the Holocene. Limitations in the modeling of surface waters appear to result from the relatively coarse resolution of global elevation data.

Corresponding author address: Dr. Michael T. Coe, Center for Climatic Research, Institute for Environmental Studies, University of Wisconsin—Madison, 1225 West Dayton Street, Madison, WI 53706-1695.

Email: coe@phoebus.meteor.wisc.edu

Save