Abstract
Atmospheric circulation anomalies and hydrologic processes associated with California wet and dry events were examined during Northern Hemisphere winter. The precipitation anomaly over the west coast of North America shows a north–south three-cell pattern. Heavy precipitation in California is accompanied by dry conditions over Washington, British Columbia, and along the southeastern coast of Alaska and reduced precipitation over the subtropical eastern Pacific. The inverse relationship between California and the Pacific Northwest is supported by the transport of moisture flux. During wet events, the southern branch of moisture flux transport strengthens and brings moisture from the North Pacific to California, hence enhanced rainfall. Strengthened moisture flux transport northward to the area north of Washington is consistent with suppressed rainfall in California.
The local precipitation anomaly pattern in the eastern tropical Pacific just north of the equator has a large influence on precipitation events in California. The enhanced precipitation generates strong rising motion. The associated sinking motion is located over California. Strong sinking motion and strong upper-level convergence favor dry conditions in California. Conversely, suppressed rainfall in the eastern Pacific is associated with above-normal precipitation in California.
Precipitation in California is likely below normal during cold ENSO events. When convection in the central Pacific is enhanced, California has heavy precipitation if rainfall in the subtropical eastern Pacific is suppressed. In addition to ENSO, precipitation in California is also modulated by the tropical intraseasonal oscillation. Wet (dry) events are favored during the phase of the oscillation associated with enhanced convection near 150°E (120°E) in the tropical Pacific.
Corresponding author address: Kingtse C. Mo, Climate Prediction Center, NCEP/NWS/NOAA W/NP52, 4700 Silver Hill Rd., Stop 9910, Washington, DC 20233-9910.
Email: wd52km@sgi44.wwb.noaa.gov