Effect of Surface Sublayer on Surface Skin Temperature and Fluxes

Xubin Zeng Institute of Atmospheric Physics, The University of Arizona, Tucson, Arizona

Search for other papers by Xubin Zeng in
Current site
Google Scholar
PubMed
Close
and
Robert E. Dickinson Institute of Atmospheric Physics, The University of Arizona, Tucson, Arizona

Search for other papers by Robert E. Dickinson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The surface sublayer is the layer of air adjacent to the surface where the transfer of momentum and heat by molecular motion becomes important. Equations are derived to incorporate this surface sublayer (or the variable ratio of the roughness length for momentum over that for heat, zo/zoh) over bare soil into a commonly used formulation for aerodynamic transfer coefficients. Along with the consideration of the laminar layer around vegetation leaves in the Biosphere–Atmosphere Transfer Scheme (BATS), these equations provide a consistent approach for the computation of surface fluxes over bare soil or vegetated surface.

Qualitative and quantitative analyses show that the surface sublayer tends to substantially increase the surface skin temperature for a given sensible heat flux and decrease the heat flux for a given surface versus air temperature difference. Using a climate model output as the atmospheric forcing data for BATS over a semiarid region, it is also found that the surface sublayer significantly increases the monthly and July-averaged hourly surface skin temperature and decreases surface sensible heat and net radiation fluxes.

Comparison with limited observations of zo/zoh also suggests that the same (or different) exchange coefficients should be used over bare soil and vegetated portions in a grid box for dense canopies (e.g., grassland or forest) [or sparse canopies (e.g., semiarid regions)].

Corresponding author address: Dr. Xubin Zeng, Institute of Atmospheric Physics, The University of Arizona, PAS Bldg., #81, Tucson, AZ 85721.

Abstract

The surface sublayer is the layer of air adjacent to the surface where the transfer of momentum and heat by molecular motion becomes important. Equations are derived to incorporate this surface sublayer (or the variable ratio of the roughness length for momentum over that for heat, zo/zoh) over bare soil into a commonly used formulation for aerodynamic transfer coefficients. Along with the consideration of the laminar layer around vegetation leaves in the Biosphere–Atmosphere Transfer Scheme (BATS), these equations provide a consistent approach for the computation of surface fluxes over bare soil or vegetated surface.

Qualitative and quantitative analyses show that the surface sublayer tends to substantially increase the surface skin temperature for a given sensible heat flux and decrease the heat flux for a given surface versus air temperature difference. Using a climate model output as the atmospheric forcing data for BATS over a semiarid region, it is also found that the surface sublayer significantly increases the monthly and July-averaged hourly surface skin temperature and decreases surface sensible heat and net radiation fluxes.

Comparison with limited observations of zo/zoh also suggests that the same (or different) exchange coefficients should be used over bare soil and vegetated portions in a grid box for dense canopies (e.g., grassland or forest) [or sparse canopies (e.g., semiarid regions)].

Corresponding author address: Dr. Xubin Zeng, Institute of Atmospheric Physics, The University of Arizona, PAS Bldg., #81, Tucson, AZ 85721.

Save
  • Avissar, R., and R. A. Pielke, 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev.,117, 2113–2136.

  • Becker, F., and Z. Li, 1995: Surface temperature and emissivity at various scales: Definition, measurement and related problems. Remote Sens. Rev.,12, 225–253.

  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor.,30, 327–341.

  • ——, and P. Viterbo, 1994: The sensitivity of winter evaporation to the formulation of aerodynamic resistance in the ECMWF model. Bound.-Layer Meteor.,71, 135–149.

  • Blyth, E. M., and A. J. Dolman, 1995: The roughness length for heat of sparse vegetation. J. Appl. Meteor.,34, 583–585.

  • Brutsaert, W. H., 1982: Evaporation into the AtmosphereTheory, History, and Applications. Reidel, 299 pp.

  • ——, 1992: Stability correction functions for the mean wind speed and temperature in the unstable surface layer. Geophys. Res. Lett.,19, 469–472.

  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci.,28, 181–189.

  • Deardorff, J. W., 1974: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Bound.-Layer Meteor.,7, 81–106.

  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, 72 pp. [Available online at http://www.atmo.arizona.edu/bats/batsmain.html.].

  • ——, V. Meleshko, D. A. Randall, E. Sarachik, P. Silva-Dias, and A. Slingo, 1996: Climate processes. Climate Change 1995: The Science of Climate Change, J. T. Houghton, L. G. Meira Filho, B. A. Challander, N. Harris, A. Kattenberg, and K. Maskell, Eds., Cambridge University Press, 192–227.

  • Duynkerke, P. G., 1992: The roughness length for heat and other vegetation parameters for a surface of short grass. J. Appl. Meteor.,31, 579–586.

  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • ——, and R. J. Francey, 1978: Bulk characteristics of heat transfer in the unstable, baroclinic atmospheric boundary layer. Bound.-Layer Meteor.,15, 399–421.

  • ——, B. B. Hicks, and R. A. Valigura, 1993: Comments on “The roughness length for heat and other vegetation parameters for a surface of short grass.” J. Appl. Meteor.,32, 1301–1303.

  • Gates, D. M., 1980: Biophysical Ecology. Springer-Verlag, 611 pp.

  • Gillies, R. R., and T. N. Carlson, 1995: Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. J. Appl. Meteor.,34, 745–756.

  • Hahmann, A. N., D. M. Ward, and R. E. Dickinson, 1995: Land surface temperature and radiative fluxes response of the NCAR CCM2/BATS to modifications in the optical properties of clouds. J. Geophys. Res.,100, 23239–23252.

  • Hall, F. G., K. F. Huemmrich, S. J. Goetz, P. J. Sellers, and J. E. Nickeson, 1992: Satellite remote sensing of surface energy balance: Success, failures, and unresolved issues in FIFE. J. Geophys. Res.,97, 19061–19089.

  • Hignett, P., 1994: Roughness lengths for temperature and momentum over heterogeneous terrain. Bound.-Layer Meteor.,68, 225–236.

  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary layer diffusion in a global climate model. J. Climate,6, 1825–1842.

  • ——, and M. Ek, 1996: Simulation of surface fluxes and boundary layer development over the pine forest in HAPEX-MOBILHY. J. Appl. Meteor.,35, 202–213.

  • Jin, M., R. E. Dickinson, and A. M. Vogelmann, 1997: A comparison of CCM2/BATS skin temperature and surface-air temperature with satellite and surface observations. J. Climate,10, 1505–1525.

  • Kohsiek, W., H. A. R. de Bruin, H. The, and B. van den Hurk, 1993: Estimation of the sensible heat flux of a semi-arid area using surface radiative temperature measurements. Bound.-Layer Meteor.,63, 213–230.

  • Koster, R. D., and M. J. Suarez, 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Rev.,97, 2697–2715.

  • Kustas, W. P., B. J. Choudhury, M. S. Moran, R. J. Reginato, R. D. Jackson, L. W. Gay, and H. L. Weaver, 1989: Determination of sensible heat flux over sparse canopy using thermal infrared data. Agric. For. Meteor.,44, 197–216.

  • Lhomme, J. P., N. Katerji, A. Perrier, and J. M. Bertolini, 1988: Radiative surface temperature and convective flux calculation over crop canopies. Bound.-Layer Meteor.,43, 383–392.

  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor.,17, 187–202.

  • Mahrt, L., 1996: The bulk aerodynamic formulation over heterogeneous surfaces. Bound.-Layer Meteor.,78, 87–119.

  • Malhi, Y., 1996: The behavior of the roughness length for temperature over heterogeneous surfaces. Quart. J. Roy. Meteor. Soc.,122,1095–1125.

  • Mascart, P., J. Noilham, and H. Giordani, 1995: A modified parameterization of flux-profile relationships in the surface layer using different roughness length values for heat and momentum. Bound.-Layer Meteor.,72, 331–344.

  • Moran, M. S., W. P. Kustas, A. Vidal, D. I. Stannard, J. H. Blanford, and W. D. Nichols, 1994: Use of ground-based remotely sensed data for surface energy balance evaluation of a semiarid rangeland. Water Resour. Res.,30, 1339–1349.

  • Nemani, R., L. Pierce, S. Running, and S. Goward, 1993: Developing satellite-derived estimates of surface moisture status. J. Appl. Meteor.,32, 548–557.

  • Pielke, R. A., 1984: Mesoscale Meteorological Modeling. Academic Press, 612 pp.

  • Sauer, T. J., J. M. Norman, C. B. Tanner, and T. B. Wilson, 1995: Measurement of heat and vapor transfer coefficients at the soil surface beneath a maize canopy using source plates. Agric. For. Meteor.,75, 161–189.

  • Sellers, P. J., S. O. Los, C. J. Tucker, C. O. Justice, D. A. Dazlich, G. J. Collatz, and D. A. Randall, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biospherical parameters from satellite data. J. Climate,9, 706–737.

  • Seth, A., F. Giorgi, and R. E. Dickinson, 1994: Simulating fluxes from heterogeneous land surfaces: Explicit subgrid method employing the Biosphere–Atmosphere Transfer Scheme (BATS). J. Geophys. Rev.,99, 18651–18667.

  • Stewart, J. B., W. P. Kustas, K. S. Humes, W. D. Nichols, M. S. Moran, and H. A. R. de Bruin, 1994: Sensible heat flux-radiometric surface temperature relationship for eight semiarid areas. J. Appl. Meteor.,33, 1110–1117.

  • Sun, J., and L. Mahrt, 1995: Determination of surface fluxes from the surface radiative temperature. J. Atmos. Sci.,52, 1096–1106.

  • Uno, I., X. M. Cai, D. G. Steyn, and S. Emori, 1995: A simple extension of the Louis method for rough surface layer modeling. Bound.-Layer Meteor.,76, 395–409.

  • Verhoef, A., H. A. R. de Bruin, and B. J. J. M. van den Hurk, 1997: Some practical notes on the parameter kB−1 for sparse vegetation. J. Appl. Meteor.,36, 560–572.

  • Vidal, A., and A. Perrier, 1989: Analysis of a simplified relation used to estimate daily evapotranspiration from satellite thermal data. Int. J. Remote Sens.,10, 1327–1337.

  • Zilitinkevich, S. S., 1970: Dynamics of the Atmospheric Boundary Layer. Leningrad Gidrometeor, 291 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1402 807 34
PDF Downloads 486 112 11