Abstract
The interdecadal variability as simulated by coupled ocean–atmosphere models is reviewed. Emphasis is given to that class of interdecadal variability that arises from ocean–atmosphere interactions. The interdecadal variability simulated can be classified roughly into four classes: tropical interdecadal variability, interdecadal variability that involves both the Tropics and the extratropics as active regions, midlatitudinal interdecadal variability involving the wind-driven ocean gyres, and midlatitudinal interdecadal variability involving the thermohaline circulation. Several coupled models predict the existence of different interdecadal climate cycles, with periods ranging from approximately 10–50 yr. This implies some inherent predictability at decadal timescales, provided that these interdecadal cycles exist in the real climate system.
Corresponding author address: Dr. Mojib Latif, Max-Planck-Institut für Meteorologie, Bundesstrasse 55, D-20146 Hamburg, Germany.
Email: latif@dkrz.de