Dynamics of Interdecadal Variability in Coupled Ocean–Atmosphere Models

M. Latif Max-Planck-Institut für Meteorologie, Hamburg, Germany

Search for other papers by M. Latif in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The interdecadal variability as simulated by coupled ocean–atmosphere models is reviewed. Emphasis is given to that class of interdecadal variability that arises from ocean–atmosphere interactions. The interdecadal variability simulated can be classified roughly into four classes: tropical interdecadal variability, interdecadal variability that involves both the Tropics and the extratropics as active regions, midlatitudinal interdecadal variability involving the wind-driven ocean gyres, and midlatitudinal interdecadal variability involving the thermohaline circulation. Several coupled models predict the existence of different interdecadal climate cycles, with periods ranging from approximately 10–50 yr. This implies some inherent predictability at decadal timescales, provided that these interdecadal cycles exist in the real climate system.

Corresponding author address: Dr. Mojib Latif, Max-Planck-Institut für Meteorologie, Bundesstrasse 55, D-20146 Hamburg, Germany.

Abstract

The interdecadal variability as simulated by coupled ocean–atmosphere models is reviewed. Emphasis is given to that class of interdecadal variability that arises from ocean–atmosphere interactions. The interdecadal variability simulated can be classified roughly into four classes: tropical interdecadal variability, interdecadal variability that involves both the Tropics and the extratropics as active regions, midlatitudinal interdecadal variability involving the wind-driven ocean gyres, and midlatitudinal interdecadal variability involving the thermohaline circulation. Several coupled models predict the existence of different interdecadal climate cycles, with periods ranging from approximately 10–50 yr. This implies some inherent predictability at decadal timescales, provided that these interdecadal cycles exist in the real climate system.

Corresponding author address: Dr. Mojib Latif, Max-Planck-Institut für Meteorologie, Bundesstrasse 55, D-20146 Hamburg, Germany.

Save
  • Anderson, D. L. T., and J. Willebrand, 1996: Decadal Climate Variability: Dynamics and Predictability. Vol. 44, Global Environmental Change, NATO ASI Series, Springer, 493 pp.

  • Balmaseda, M. A., M. K. Davey, and D. L. T. Anderson, 1995: Decadal and seasonal dependence of ENSO prediction skill. J. Climate,8, 2705–2715.

  • Barnett, T. P., M. Latif, N. Graham, M. Flügel, S. Pazan, and W. B. White, 1993: ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere model. J. Climate,6, 1545–1566.

  • Bjerknes, J., 1964: Atlantic air–sea interaction. Advances in Geophysics, Academic Press, Vol. 10, 1–82.

  • Carton, J. A., and B. Huang, 1994: Warm events in the tropical Atlantic. J. Phys. Oceanogr.,24, 888–893.

  • ——, X. Cao, B. S. Giese, and A. M. da Silva, 1996: Decadal and interannual SST variability in the tropical Atlantic Ocean. J. Phys. Oceanogr.,26, 1165–1175.

  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature,385, 516–518.

  • Chen, D., S. E. Zebiak, M. A. Cane, and A. J. Busalacchi, 1997: On the initialization and predictability of a coupled ENSO forecast model. Mon. Wea. Rev.,125, 773–788.

  • Chen, F., and M. Ghil, 1996: Interdecadal variability in a hybrid coupled ocean–atmosphere model. J. Phys. Oceanogr.,26,1561–1578.

  • Cubasch, U., R. Voss, G. C. Hegerl, J. Waskewitz, and T. J. Crowley, 1997: Simulation of the influence of solar radiation variations on the global climate with an ocean–atmosphere general circulation model. Climate Dyn.13, 757–767.

  • da Silva, A. M., C. C. Young, and S. Levitus, 1994: Atlas of surface marine data 1994, Vols. 1 and 3. NOAA Atlas NESDIS 6 and 8, 83 pp. [Available from NOCD, NOAA/NESDIS E/OC21, Washington, DC 20235.].

  • Delworth, T., 1996: North Atlantic interannual, variability in a coupled ocean–atmosphere model. J. Climate,9, 2356–2375.

  • ——, S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate,6, 1993–2011.

  • ——, ——, and ——, 1997: Multidecadal climate variability in the Greenland Sea and surrounding regions: A coupled model simulation. Geophys. Res. Lett.,24, 257–260.

  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate,6, 1743–1753.

  • ——, M. A. Alexander, and M. S. Timlin, 1996: Upper-ocean thermal variations in the North Pacific during 1970–91. J. Climate,9,1840–1855.

  • Dickson, R. R., J. Meincke, S.-A. Malmberg, and A. J. Lee, 1988: The “great salinity anomaly” in the northern North Atlantic 1968–1982. Progress in Oceanography, Vol. 20, Pergamon Press, 103–151.

  • Eckert, C., and M. Latif, 1997: Predictability of a stochastically forced hybrid coupled model of El Niño. J. Climate,10, 1488–1504.

  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic SST variability and its relationship to El Niño–Southern Oscillation. J. Geophys. Res.,102 (C1), 929–945.

  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worlwide sea temperatures. Nature,320, 602–607.

  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to sea surface temperature variability and thermocline variability. Tellus,29, 284–305.

  • ——, P. Müller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr.,27, 1533–1546.

  • Glantz, M. H., R. W. Katz, and N. Nicholls, 1991: Teleconnections Linking Worldwide Climate Anomalies. Cambridge University Press, 535 pp.

  • Goddard, L., and N. E. Graham, 1997: El Niño in the 1990s. J. Geophys. Res.,102, 10 423–10 436.

  • Griffies, S. M., and E. Tziperman, 1995: A linear thermohaline oscillator driven by stochastic atmospheric forcing. J. Climate,8,2440–2453.

  • ——, and K. Bryan, 1997: Ensemble predictability of simulated North Atlantic interdecadal climate variability. Science,275, 181–184.

  • Grötzner, A., M. Latif, and T. P. Barnett, 1998: A decadal climate cycle in the North Atlantic Ocean as simulated by the ECHO coupled GCM. J. Climate, in press.

  • Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the Tropics and extratropics. Science,275, 805–807.

  • Hasselmann, K., 1976: Stochastic climate models. Part I: Theory. Tellus,28, 473–485.

  • Haston, L., and J. Michaelson, 1994: Long-term central coastal California precipitation variability and relationships to El Niño. J. Climate,7, 1373–1387.

  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev.,109, 813–829.

  • Houghton, R. W., and Y. M. Tourre, 1992: Characteristics of low-frequency sea surface temperature fluctuations in the tropical Atlantic. J. Climate,5, 765–771.

  • Jacobs, G. A., H. E. Hurlbert, J. C. Kindle, E. J. Metzger, J. L. Mitchell, W. J. Teague, and A. J. Wallcraft, 1994: Decade-scale trans-Pacific propagation and warming effects of an El Niño anomaly. Nature,370, 360–363.

  • James, I. N., and P. M. James, 1989: Ultra-low-frequency variability in a simple atmospheric model. Nature,342, 53–55.

  • Ji, M., A. Leetmaa, and V. E. Kousky, 1996: Coupled model forecasts of ENSO during the 1980s and 1990s at the National Centers for Environmental Prediction. J. Climate,9, 3105–3120.

  • Jiang, S., F.-F. Jin, and M. Ghil, 1995: Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double gyre, shallow-water model. J. Phys. Oceanogr.,25, 764–786.

  • Jin, F.-F., J. D. Neelin, and M. Ghil, 1994: El Niño on the devil’s staircase: Annual subharmonic steps to chaos. Science,264, 70–72.

  • Kushnir, Y., 1994: Interdecadal variations in the North Atlantic sea surafce temperature and associates atmospheric conditions. J. Climate,7, 141–157.

  • Labitzke, K., 1987: Sunspots, the QBO, and the stratospheric temperature in the north polar region. Geophys. Res. Lett.,14, 535–537.

  • Lamb, P. J., and R. A. Peppler, 1991: Regional case studies of teleconnections: Physical aspects. West Africa. Teleconnections Linking Worldwide Climate Anomalies, Cambridge University Press, 121–189.

  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science,266,634–637.

  • ——, and ——, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate,9, 2407–2423.

  • ——, T. Stockdale, J. Wolff, G. Burgers, E. Maier-Reimer, and M. M. Junge, 1994: Climatology and variability in the ECHO coupled GCM. Tellus,46A, 351–366.

  • ——, A. Grötzner, and H. Frey, 1996a: El Hermanito: El Niño’s overlooked little brother in the Atlantic. Max-Planck-Institut für Meteorologie Rep. 196, 14 pp. [Available from Max-Planck-Institut für Meteorologie, Bundesstrasse 55, D-20146 Hamburg, Germany.].

  • ——, ——, M. Münnich, E. Maier-Reimer, S. Venzke, and T. P. Barnett, 1996b: A mechanism for decadal climate variability. Decadal Climate Variability: Dynamics and Predictability, Vol. 44, Global Environmental Change, NATO ASI Series, Springer, 263–292.

  • ——, R. Kleeman, and C. Eckert, 1997a: Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990s. J. Climate,10, 2221–2239.

  • ——, A. Grötzner, A. Timmermann, S. Venzke, and T. P. Barnett, 1997b: Dynamics of decadal climate variability over the Northern Hemisphere. Proc. JCESS/CLIVAR Workshop on Decadal Climate Variability, Columbia MD, Max-Planck-Institut für Meteorologie, Appendix A.

  • ——, and Coauthors, 1998: TOGA review paper: Predictability and Prediction. J. Geophys. Res., in press.

  • Lean, J., J. Beer, and R. Bradley, 1995: Reconstruction of solar irradiance since 1600: Implications for climate change. Geophys. Res. Lett.,22, 3195–3198.

  • Levitus, S., and J. Antonov, 1995: Observational evidence of interannual to decadal-scale variability of the subsurface temperature-salinity structure of the World Ocean. Climate Change, Kluwer Academic, 495–514.

  • ——, T. P. Boyer, and J. Antonov, 1994: World Ocean Atlas 1994.Vol. 5, Interannual Variability of Upper Ocean Thermal Structure, U.S. Department of Commerce, NOAA, 176 pp.

  • Liu, Z., and S. G. H. Philander, 1995: How different wind stress patterns affect the tropical subtropical circulations of the upper ocean. J. Phys. Oceanogr.,25, 449–462.

  • ——, ——, and R. C. Pacanowski, 1994: A GCM study of the tropical–subtropical upper-ocean water exchange. J. Phys. Oceanogr.,24, 2606–2623.

  • Lohmann, G., 1996: Stability of the thermohaline circulation in analytical and numerical models. Ph.D. thesis, University of Bremen. [Available from Alfred-Wegener-Institut für Polar- und Meeresforschung, D-27568 Bremerhaven, Germany.].

  • Lu, P., and J. P. McCreary, 1995: Influence of the ITCZ on the flow of thermocline water from the subtropical to the equatorial Pacific Ocean. J. Phys. Oceanogr.,25, 3076–3088.

  • Manabe, S., and R. J. Stouffer, 1996: Low-frequency variability of surface air-temperature in a 1000-yr integration of a coupled atmosphere–ocean–land surface model. J. Climate,9, 376–393.

  • Mann, M. E., and J. Park, 1994: Global-scale modes of surface temperature variability on interannual to century timescales. J. Geophys. Res.,99, 25819–25833.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc.,78, 1069–1080.

  • Meehl, G. A., 1996: Characteristics of decadal variability in a global coupled GCM. Proc. JCESS/CLIVAR Workshop on Decadal Climate Variability, Columbia, MD, Max-Planck-Institut für Meteorologie, Appendix A.

  • Mehta, V. M., 1998: Variability of the tropical ocean surface temperatures at decadal-multidecadal timescales. Part I: The Atlantic Ocean. J. Climate, in press.

  • ——, and T. Delworth, 1995: Decadal variability of the tropical Atlantic ocean surface temperature in shipboard measurements and in a global ocean–atmosphere model. J. Climate,8, 172–190.

  • Mikolajewicz, U., and E. Maier-Reimer, 1990: Internal secular variability in an ocean general circulation model. Climate Dyn.,4,145–156.

  • Moura, A. D., and J. Shukla, 1981: On the dynamics of drought in northeast Brazil: Observations, theory, and numerical experiments with a general circulation model. J. Atmos. Sci.,38, 2653–2675.

  • Münnich, M., M. A. Cane, and S. E. Zebiak, 1991: A study of self-excited oscillations in a tropical ocean–atmosphere system. Part II: Nonlinear cases. J. Atmos. Sci.,48, 1238–1248.

  • Mysak, L. A., D. K. Manak, and R. F. Mardsen, 1990: Sea-ice anomalies in the Greenland and Labrador Seas 1900–84 and their relation to an interdecadal Arctic climate cycle. Climate Dyn.,5, 111–133.

  • Neelin, J. D., M. Latif, and F.-F. Jin, 1994: Dynamics of coupled ocean–atmosphere models: The tropical problem. Annu. Rev. Fluid Mech.,26, 617–659.

  • Palmer, T. N., and Z. Sun, 1985: A modelling and observational study of the relationship between sea surface temperature in the northwest Atlantic and the atmospheric general circulation. Quart. J. Roy. Meteor. Soc.,111, 947–975.

  • Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • Robertson, A. W., 1996: Interdecadal variability over the North Pacific in a multi-century climate simulation. Climate Dyn.,12,227–241.

  • Robock, A. D., and J. Mao, 1995: The volcanic signal in surface temperature observations. J. Climate,8, 1086–1103.

  • Rowell, D. P., and F. W. Zwiers, 1997: Sources of atmospheric decadal variability. Proc. 7th Conf. on Climate Variations, Long Beach, CA, Amer. Meteor. Soc., 87–89.

  • Saravanan, R., and J. C. McWilliams, 1997: Stochasticity and spatial resonance in interdecadal climate fluctuations. J. Climate,10,2299–2320.

  • Spall, M. A., 1996: Dynamics of the Gulf Stream/deep western boundary current crossover. Part II: Low-frequency internal oscillations. J. Phys. Oceanogr.,26, 2169–2182.

  • Tett, S. F. B., T. C. Johns, and J. F. B. Mitchell, 1998: Global and regional variability in a coupled AOGCM. Climate Dyn., in press.

  • Timmermann, A., M. Latif, R. Voss, and A. Grötzner, 1998: Northern Hemispheric interdecadal variability: A coupled air–sea mode. J. Climate, in press.

  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn.,9, 303–319.

  • ——, and T. J. Hoar, 1996: The 1990–95 El Niño–Southern Oscillation event: Longest on record. Geophys. Res. Lett.,23, 57–60.

  • von Storch, J.-S., 1994: Interdecadal variability in a global coupled model. Tellus,46A, 419–432.

  • Weaver, A. J., and E. S. Sarachik, 1991: Evidence for decadal variability in an ocean general circulation model: An advective mechanism. Atmos.Ocean,29, 197–231.

  • ——, J. Marotzke, P. F. Cummins, and E. S. Sarachik, 1993: Stability and variability of the thermohaline circulation. J. Phys. Oceanogr.,23, 39–60.

  • Weisse, R., U. Mikolajewicz, and E. Maier-Reimer, 1994: Decadal variability of the North Atlantic in an ocean general circulation model. J. Geophys. Res.,99, 12411–12421.

  • Wohlleben, T. M. H., and A. J. Weaver, 1995: Interdecadal variability in the subpolar North Atlantic. Climate Dyn.,11, 459–467.

  • Xu, W., T. P. Barnett, and M. Latif, 1998: Decadal variability in the North Pacific as simulated by a hybrid coupled model. J. Climate,11, 297–312.

  • Zebiak, S. E., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate,6, 1567–1586.

  • ——, and M. A. Cane, 1987: A model El Niño/Southern Oscillation. Mon. Wea. Rev.,115, 2262–2278.

  • Zhang, R.-H., and S. Levitus, 1997: Structure and cycle of decadal variability of upper ocean temperature in the North Pacific. J. Climate,10, 710–727.

  • ——, J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate,10, 1004–1020.

  • Zorita, E., and C. Frankignoul, 1997: Modes of North Atlantic decadal variability in the ECHAM1/LSG coupled ocean–atmosphere general circulation model. J. Climate,10, 183–200.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1188 692 27
PDF Downloads 253 74 6