Abstract
An idealized coupled ocean–atmosphere model is utilized to study the influence of horizontal resolution and parameterized eddy processes on the thermohaline circulation. A series of experiments ranging from 4° to 0.25° resolution, with appropriate horizontal viscosities and diffusivities in each case, is performed for both coupled and ocean-only models. Spontaneous internal variability (primarily on the decadal timescale) is found to exist in the higher-resolution cases (with the exception of one of the restoring experiments). The decadal oscillation (whose period varies slightly between cases) is described as an advective–convective mechanism that is thermally driven and linked to the value of the horizontal diffusivity utilized in the model. Increasing the diffusivity in the high-resolution cases presented in this paper is enough to destroy the variability, whereas decreasing the diffusivity in the moderately coarse-resolution cases is capable of inducing decadal-scale variability. As the resolution is increased still further, baroclinic instability within the western boundary current adds a more stochastic component to the solution such that the variability is less regular and more chaotic (giving rise to intradecadal timescales). These results point to the importance of higher resolution in the ocean component of coupled models, revealing the existence of richer variability in models that require less parameterized diffusion.
Corresponding author address: Dr. Augustus F. Fanning, School of Earth and Ocean Sciences, University of Victoria, P.O. Box 1700, Victoria, BC V8W 2Y2, Canada.
Email: afanning@mer.seos.uvic.ca