Abstract
This paper studies the variability of deep-ocean mass transport using four 1000-yr integrations performed with coupled general circulation models. Statistics describing the spectral and spatial features are considered. It is shown that these features depend crucially on the time-mean state. For the transport of tropical and subtropical water masses in three of the integrations, the spectral levels continually increase with decreasing frequency and do not show isolated peaks at low frequencies. The slope of the low-frequency spectrum (in a log–log plot) changes with increasing depth. It has values of about 0 near the surface, about −1 at intermediate depth, and about −2 at or near the bottom. The result indicates that the maximal memory timescale for deep-ocean mass transport is longer than a few centuries. The situation is different in the fourth integration, which has a different mean circulation pattern. In this case, the low-frequency spectrum is more or less flat in the tropical and subtropical oceans below 2000–3000 m, indicating weak low-frequency variations. The dominant spatial covariance structures describe an anomalous recirculation of intermediate water masses, which is confined to a large extent to each ocean basin. The spatial scale of the dominant modes is therefore smaller than that of the time-mean circulation.
Corresponding author address: Dr. Jin-Song von Storch, Meteorologisches Institut, Universität Hamburg, Bundesstrasse 55, D-21046 Hamburg, Germany.
Email: jin@gkss.de