• Barnett, T. P., M. Latif, E. Kirk, and E. Roeckner, 1991: On ENSO physics. J. Climate,4, 487–515.

  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry, and nonlinearity. J. Atmos. Sci.,46, 1687–1712.

  • Boulanger, J.-P., and C. Menkes, 1999: Long equatorial wave reflection in the Pacific Ocean from TOPEX/POSEIDON data during the 1992–1998 period. Climate Dyn.,15, 205–226.

  • Cane, M. A., and S. E. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science,228, 1085–1087.

  • ——, ——, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature,321, 827–832.

  • Emery, W. J., and R. E. Thomson, 1997. Data Analysis Methods in Physical Oceanography. Pergamon Press, 634 pp.

  • Ji, M., and A. Leetmaa, 1997: Impact of data assimilation on ocean initialization and El Niño prediction. Mon. Wea. Rev.,125, 742–753.

  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci.,54, 811–829.

  • ——, 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci.,54, 830–847.

  • Kessler, W. S., 1990: Observations of long Rossby waves in the northern tropical Pacific. J. Geophys. Res.,95, 5183–5217.

  • Li, B., and A. J. Clarke, 1994: An examination of some ENSO mechanisms using interannual sea level at the eastern and western equatorial boundaries and the zonally averaged equatorial wind. J. Phys. Oceanogr.,24, 681–690.

  • Mantua, N. J., and D. S. Battisti, 1994: Evidence for the delayed oscillator mechanism for ENSO: The “observed” oceanic Kelvin mode in the far western Pacific. J. Phys. Oceanogr.,24, 691–699.

  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–1998 El Niño. Science,283, 950–954.

  • ——, and X. Yu, 1999: Equatorial waves and the 1997–98 El Niño. Geophys. Res. Lett.,26, 2961–2964.

  • ——, and Coauthors, 1998: The Tropical Ocean Global Atmosphere (TOGA) observing system: A decade of progress. J. Geophys. Res.,103, 14 169–14 240.

  • Meyers, G., H. Phillips, N. R. Smith, and J. Sprintall, 1991: Space and time scales for optimum interpolation of temperature—tropical Pacific Ocean. Progress in Oceanography, Vol. 28, Pergamon, 189–218.

  • Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 289 pp.

  • Picaut, J., F. Masia, and Y. du Penhoat, 1997: An advective–reflective conceptual model for the oscillatory nature of the ENSO. Science,277, 663–666.

  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate,7, 929–948.

  • ——, and ——, 1995: A high resolution global sea surface temperature climatology. J. Climate,8, 1571–1583.

  • Schneider, E. K., B. Huang, and J. Shukla, 1994: Ocean wave dynamics and El Niño. Center for Ocean–Land–Atmosphere Studies, Rep. 1, 46 pp.

  • ——, ——, and ——, 1995: Ocean wave dynamics and El Niño. J. Climate,8, 2415–2439.

  • Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci.,45, 549–566.

  • ——, and ——, 1990: Ocean wave dynamics and the time scale of ENSO. J. Phys. Oceanogr.,20, 629–645.

  • Smith, N. R., 1991: Objective quality controls and performance diagnostics of an oceanic subsurface thermal analysis scheme. J. Geophys. Res.,96, 3279–3287.

  • ——, 1995a: The BMRC ocean thermal analysis system. Aust. Meteor. Mag.,44, 93–110.

  • ——, 1995b: An improved system for tropical ocean sub-surface temperature analyses. J. Atmos. Oceanic Technol.,12, 850–870.

  • ——, J. E. Blomley, and G. Meyers, 1991: A univariate statistical interpolation scheme for subsurface thermal analyses in the tropical oceans. Progress in Oceanography, Vol. 28, Pergamon, 219–256.

  • Springer, S. R., M. J. McPhaden, and A. J. Busalacchi, 1990: Oceanic heat content variability in the tropical Pacific during the 1982–1983 El Niño. J. Geophys. Res.,95, 22 089–22 101.

  • Stricherz, J. N., J. J. O’Brien, and D. M. Legler, 1992: Atlas of Florida State University Tropical Pacific Winds for TOGA 1966–1985. The Florida State University, 275 pp.

  • ——, D. M. Legler, and J. J. O’Brien, 1997: Pacific Ocean. Vol. 2, TOGA Pseudo-stress Atlas 1985–1994. The Florida State University, 163 pp.

  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci.,45, 3283–3287.

  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc.,78, 2771–2777.

  • Wang, B., R. Wu, and R. Lukas, 1999: Roles of the western north Pacific wind variation in thermocline adjustment and ENSO phase transition. J. Meteor. Soc. Japan,77, 1–16.

  • Wang, W., and M. J. McPhaden, 2000: The surface-layer heat balance in the equatorial Pacific Ocean, Part II: Interannual variability. J. Phys. Oceanogr., in press.

  • Weisberg, R. H., and C. Wang, 1997: Slow variability in the equatorial west-central Pacific in relation to ENSO. J. Climate,10, 1998–2017.

  • Wyrtki, K., 1975a: El Niño—the dynamic response of the equatorial Pacific ocean to atmospheric forcing. J. Phys. Oceanogr.,5, 572–584.

  • ——, 1975b: Fluctuations in the dynamic topography in the Pacific Ocean. J. Phys. Oceanogr.,5, 450–459.

  • ——, 1985: Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res.,90, 7129–7132.

  • Zebiak, S. E., 1989: Oceanic heat content variability and El Niño cycles. J. Phys. Oceanogr.,19, 475–486.

  • ——, and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev.,115, 2262–2278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 601 601 33
PDF Downloads 419 419 37

Observations of Warm Water Volume Changes in the Equatorial Pacific and Their Relationship to El Niño and La Niña

View More View Less
  • 1 Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington
  • | 2 National Oceanic and Atmospheric Administration/Pacific Marine Environmental Laboratory, Seattle, Washington
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This paper describes observed changes in surface winds, sea surface temperature (SST), and the volume of water warmer than 20°C (WWV) in the equatorial Pacific Ocean for the period 1980–99. The purpose is to test recent hypotheses about the relationship between variations in WWV and the El Niño–Southern Oscillation (ENSO) cycle. The results confirm inferences based on theory, models, and previous empirical analyses using proxy data (namely sea level) that ENSO involves a recharge and discharge of WWV along the equator and that the cyclic nature of ENSO results from a disequilibrium between zonal winds and zonal mean thermocline depth. The authors also find that the magnitude of ENSO SST anomalies is directly related to the magnitude of zonal mean WWV anomalies. Furthermore, for a given change in equatorial WWV, the corresponding warm El Niño SST anomalies are larger than the corresponding cold La Niña anomalies. This asymmetry between the warm and cold phases of the ENSO cycle implies differences in the relative importance of physical processes controlling SST during El Niño and La Niña events.

Corresponding author address: Dr. Christopher S. Meinen, Joint Institute for the Study of the Atmosphere and Ocean, NOAA/PMEL, 7600 Sand Point Way NE, OCRD/Bldg. 3, Seattle, WA 98115.

Email: meinen@pmel.noaa.gov

Abstract

This paper describes observed changes in surface winds, sea surface temperature (SST), and the volume of water warmer than 20°C (WWV) in the equatorial Pacific Ocean for the period 1980–99. The purpose is to test recent hypotheses about the relationship between variations in WWV and the El Niño–Southern Oscillation (ENSO) cycle. The results confirm inferences based on theory, models, and previous empirical analyses using proxy data (namely sea level) that ENSO involves a recharge and discharge of WWV along the equator and that the cyclic nature of ENSO results from a disequilibrium between zonal winds and zonal mean thermocline depth. The authors also find that the magnitude of ENSO SST anomalies is directly related to the magnitude of zonal mean WWV anomalies. Furthermore, for a given change in equatorial WWV, the corresponding warm El Niño SST anomalies are larger than the corresponding cold La Niña anomalies. This asymmetry between the warm and cold phases of the ENSO cycle implies differences in the relative importance of physical processes controlling SST during El Niño and La Niña events.

Corresponding author address: Dr. Christopher S. Meinen, Joint Institute for the Study of the Atmosphere and Ocean, NOAA/PMEL, 7600 Sand Point Way NE, OCRD/Bldg. 3, Seattle, WA 98115.

Email: meinen@pmel.noaa.gov

Save