An Orbitally Driven Tropical Source for Abrupt Climate Change

Amy C. Clement Lamont–Doherty Earth Observatory, Palisades, New York

Search for other papers by Amy C. Clement in
Current site
Google Scholar
PubMed
Close
,
Mark A. Cane Lamont–Doherty Earth Observatory, Palisades, New York

Search for other papers by Mark A. Cane in
Current site
Google Scholar
PubMed
Close
, and
Richard Seager Lamont–Doherty Earth Observatory, Palisades, New York

Search for other papers by Richard Seager in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Paleoclimatic data are increasingly showing that abrupt change is present in wide regions of the globe. Here a mechanism for abrupt climate change with global implications is presented. Results from a tropical coupled ocean–atmosphere model show that, under certain orbital configurations of the past, variability associated with El Niño–Southern Oscillation (ENSO) physics can abruptly lock to the seasonal cycle for several centuries, producing a mean sea surface temperature (SST) change in the tropical Pacific that resembles a La Niña. It is suggested that this change in SST would have a global impact and that abrupt events such as the Younger Dryas may be the outcome of orbitally driven changes in the tropical Pacific.

Corresponding author address: Dr. Amy C. Clement, Lamont–Doherty Earth Observatory, Rt. 9W, Palisades, NY 10964.Email: clement@rosie.ldgo.columbia.edu

Abstract

Paleoclimatic data are increasingly showing that abrupt change is present in wide regions of the globe. Here a mechanism for abrupt climate change with global implications is presented. Results from a tropical coupled ocean–atmosphere model show that, under certain orbital configurations of the past, variability associated with El Niño–Southern Oscillation (ENSO) physics can abruptly lock to the seasonal cycle for several centuries, producing a mean sea surface temperature (SST) change in the tropical Pacific that resembles a La Niña. It is suggested that this change in SST would have a global impact and that abrupt events such as the Younger Dryas may be the outcome of orbitally driven changes in the tropical Pacific.

Corresponding author address: Dr. Amy C. Clement, Lamont–Doherty Earth Observatory, Rt. 9W, Palisades, NY 10964.Email: clement@rosie.ldgo.columbia.edu

Save
  • Alley, R., and P. Clark, 1999: The deglaciation of the Northern Hemisphere: A global perspective. Annu. Rev. Earth Planet. Sci., 27 , 149182.

    • Search Google Scholar
    • Export Citation
  • —— and Coauthors, 1993: Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature, 362 , 527529.

    • Search Google Scholar
    • Export Citation
  • Berger, A., 1978: Long-term variations of daily insolation and Quaternary climate changes. J. Atmos. Sci., 35 , 23622367.

  • Bond, G., W. Showers, M. Elliot, M. Evans, R. Lotti, I. Hajdas, G. Bonani, and S. Johnson, 1999: The North Atlantic's 1–2 kyr climate rhythm: Relation to Heinrich events, Dansgaard/Oeschger cycles and the Little Ice Age. Mechanisms of Millenial Scale Global Climate Change, P. U. Clark, R. S. Webb, and L. D. Keigen, Eds. Amer. Geophys. Union, 35–57.

    • Search Google Scholar
    • Export Citation
  • Chang, P., B. Wang, T. Li, and L. Ji, 1994: Interactions between the seasonal cycle and the Southern Oscillation: Frequency entrainment and chaos in a coupled ocean–atmosphere model. Geophys. Res. Lett., 21 , 28172820.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., R. S. Webb, and L. D. Keigwin, 1999: Mechanisms of Millenial Scale Global Climate Change. Amer. Geophys. Union, 394 pp.

  • Clement, A. C., R. Seager, and M. A. Cane, 1999: Orbital controls on the tropical climate. Paleoceanography, 14 , 441456.

  • Denton, G., and C. Hendy, 1994: Younger Dryas age advance of Franz Josef Glacier in the Southern Alps of New Zealand. Science, 264 , 14341437.

    • Search Google Scholar
    • Export Citation
  • Fairbanks, R. G., 1989: A 17 000 year glacio-eustatic sea-level record: Influence of glacial melting rates on the Younger Dryas and deep ocean circulation. Nature, 342 , 637642.

    • Search Google Scholar
    • Export Citation
  • Heinrich, H., 1988: Origin and consequences of cyclic ice rafting in the Northeast Atlantic ocean during the past 130 000 years. Quat. Res., 29 , 142152.

    • Search Google Scholar
    • Export Citation
  • Hughen, K., J. Overpeck, L. Peterson, and S. Trumbore, 1996: Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature, 380 , 5154.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., J. D. Neelin, and M. Ghil, 1996: El Niño/Southern Oscillation and the annual cycle: Subharmonic frequency-locking and aperiodicity. Physica D, 98 , 442465.

    • Search Google Scholar
    • Export Citation
  • Linsley, B., and R. Thunell, 1990: The record of deglaciation in the Sulu Sea: Evidence for the Younger Dryas event in the tropical western Pacific. Paleoceanography, 5 , 10251039.

    • Search Google Scholar
    • Export Citation
  • Lowell, T., and and Coauthors, 1995: Interhemispheric correlation of late Pleistocene glacial events. Science, 269 , 15411549.

  • Manabe, S., and R. Stouffer, 2000: Study of abrupt climate change by a coupled ocean–atmosphere model. Quat. Sci. Rev., 19 , 285299.

    • Search Google Scholar
    • Export Citation
  • Mikolajewicz, U., T. J. Crowley, A. Schiller, and R. Voss, 1997: Modelling teleconnections between the North Atlantic and the North Pacific during the Younger Dryas. Nature, 387 , 384387.

    • Search Google Scholar
    • Export Citation
  • Moore, T., J. Walker, D. Rea, C. Lewis, L. Shane, and A. J. Smith, 2000: Younger Dryas interval and outflow from the Laurentide ice sheet. Paleoceanography, 15 , 418.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. Battisti, A. Hirst, F. Jin, Y. Wakata, T. Yamagata, and S. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, , 14 26114 290.

    • Search Google Scholar
    • Export Citation
  • Peteet, D., 1995: A global Younger Dryas. Quat. Int., 28 , 93104.

  • Schmittner, A., C. Appenzeller, and T. F. Stocker, 2000: Enhanced Atlantic freshwater export during El Niño. Geophys. Res. Lett.,27, 1163–1166.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., and D. Battisti, 2001: A linear sochastic dynamical model of ENSO. Part II: Analysis. J. Climate, 14 , 445466.

  • Thompson, L., E. Mosley-Thompson, M. E. Davis, P-N. Lin, K. A. Henderson, J. Cole-Dai, J. F. Bolzan, and K. B. Liu, 1995: Late glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science, 269 , 4650.

    • Search Google Scholar
    • Export Citation
  • —— and Coauthors, 1998: A 25 000-year tropical climate history from Bolivian ice cores. Science, 282 , 18581864.

  • Tziperman, E., M. A. Cane, and S. E. Zebiak, 1995: Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasi-periodicity route to chaos. J. Atmos. Sci., 52 , 293306.

    • Search Google Scholar
    • Export Citation
  • Yin, J., and D. Battisti, 2001: The importance of tropical sea surface temperature patterns in simulations of Last Glacial Maximum climate. J. Climate, 14 , 565581.

    • Search Google Scholar
    • Export Citation
  • Zahn, R., H. Kudrass, M. Park, H. Erlenkeuser, and P. Gootes, 1997: Thermohaline instability in the North Atlantic during meltwater events: Stable isotope and ice-rafted detritus records from core SO75-26KL, Portugese margin. Paleoceanography, 12 , 696710.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1638 880 389
PDF Downloads 493 121 7