• Auer, I., , R. Böhm, , and H. Mohnl, 1993: Climatic change on Sonnblick—A multielemental approach to describe climate change using a centennial data set. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 249–252.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., , and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev, 115 , 10831126.

    • Search Google Scholar
    • Export Citation
  • Benteli, A., 1870: Die atmosphärischen Niederschläge in den 7 Hauptflussgebieten der Schweiz. Schweiz. Meteor. Beobachtungen, 7 , 716.

    • Search Google Scholar
    • Export Citation
  • Briffa, K. R., , P. D. Jones, , and F. H. Schweingruber, 1992: Tree-ring density reconstructions of summer temperature patterns across western North America since 1600. J. Climate, 5 , 735754.

    • Search Google Scholar
    • Export Citation
  • Buffoni, L., , M. Maugeri, , and T. Nanni, 1999: Precipitation in Italy from 1833 to 1996. Theor. Appl. Climatol, 63 , 3340.

  • Cook, E. R., , K. R. Briffa, , and P. D. Jones, 1994: Spatial regression methods in dendroclimatology: A review and comparison of two techniques. Int. J. Climatol, 14 , 379402.

    • Search Google Scholar
    • Export Citation
  • Craddock, J. M., , and C. R. Flood, 1969: Eigenvectors for representing the 500-mb geopotential surface over the Northern Hemisphere. Quart. J. Roy. Meteor. Soc, 95 , 576593.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , I. Y. Fung, , and A. D. Del Genio, 1997: Surface observed global land precipitation variations during 1900–88. J. Climate,, 10 , 29432962.

    • Search Google Scholar
    • Export Citation
  • Fliri, F., 1986: Synoptisch-klimatologische Niederschlagsanalyse zwischen Genfersee and Hohen Tauern. Wetter Leben, 38 , 140149.

  • Frei, C., , and C. Schär, 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol, 18 , 873900.

    • Search Google Scholar
    • Export Citation
  • Frei, C., , and C. Schär, 2001: Detection probability of trends in rare events: Theory and application of heavy precipitation in the Alpine region. J. Climate,, 14 , 15681584.

    • Search Google Scholar
    • Export Citation
  • Fritts, H. C., , T. J. Blasing, , B. P. Hayden, , and J. E. Kutzbach, 1971:: Multivariate techniques for specifying tree-growth and climate relationships and for reconstructing anomalies in palaeoclimate. J. Appl. Meteor, 10 , 845864.

    • Search Google Scholar
    • Export Citation
  • Gutermann, T., 1974: Zur Niederschlagsmessung in der Schweiz: Aktuelle Beobachtungsnetze und grundsätzliche Messprobleme. Arbeitsber. Schweiz. Meteor. Zentralanst. 45, MeteoSwiss, 33 pp. [Available from MeteoSwiss, Krähbühlstrasse 58, CH-8044 Zürich, Switzerland.].

    • Search Google Scholar
    • Export Citation
  • Haston, L., , and J. Michaelsen, 1997: Spatial and temporal variability of Southern California precipitation over the last 400 yr and relationships to atmospheric circulation patterns. J. Climate, 10 , 18361852.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., , L. G. M. Filho, , B. A. Callander, , N. Harris, , A. Kattenberg, , and K. Maskell, Eds.,. 1996: Climate Change 1996: The Science of Climate Change. Cambridge University Press, 453 pp.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the Northern Atlantic oscillation—regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1996: Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett, 23 , 665668.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , and H. van Loon, 1997: Decadal variations in climate associated with the North Atlantic oscillation. Climatic Change, 36 , 301326.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., 1986: Principal Component Analysis. Springer-Verlag, 271 pp.

  • Jones, P. D., 1994: Hemispheric surface air temperature variations: A reanalysis and an update to 1993. J. Climate, 7 , 17941802.

  • Jones, P. D., , and M. Hulme, 1996: Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol, 16 , 361377.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and Coauthors. 1999: Monthly mean pressure reconstructions for Europe for the 1780–1995 period. Int. J. Climatol, 19 , 347364.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., , Y. Kushnir, , M. A. Cane, , and M. B. Blumenthal, 1997: Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures. J. Geophys. Res, 102 , 27 83527 860.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., , M. A. Cane, , Y. Kushnir, , A. C. Clement, , M. B. Blumenthal, , and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res, 103 , 18 56718 589.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., , R. S. Bradley, , and M. K. Hughes, 1998: Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392 , 779787.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., , and E. S. Epstein, 1989: Skill scores and correlation coefficients in model verification. Mon. Wea. Rev, 117 , 572581.

  • New, M., , M. Hulme, , and P. Jones, 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12 , 829856.

    • Search Google Scholar
    • Export Citation
  • New, M., , M. Hulme, , and P. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13 , 22172238.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , and R. F. Cahalan, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev, 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • O'Lenic, E. A., , and R. E. Livezey, 1988: Practical considerations in the use of rotated principal component analysis (RPCA) in diagnostic studies of upper-air height fields. Mon. Wea. Rev, 116 , 16821689.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., 1988: Principal Component Analysis in Meteorology and Oceanography. Elsevier, 425 pp.

  • Richman, M. B., 1986: Rotation of principal components. J. Climatol, 6 , 293335.

  • Schär, C., , T. D. Davies, , C. Frei, , H. Wanner, , M. Widmann, , M. Wild, , and H. C. Davies, 1998: Current alpine climate. A View from the Alps: Regional Perspectives on Climate Change, P. Cebon et al., Eds., MIT Press, 21–72.

    • Search Google Scholar
    • Export Citation
  • Schönwiese, C-D., , J. Rapp, , T. Fuchs, , and M. Denhard, 1994: Observed climate trends in Europe 1891–1990. Meteor. Z, 3 , 2228.

  • Shen, S. S., , G. R. North, , and K. Y. Kim, 1994: Spectral approach to optimal estimation of the global average temperature. J. Climate, 7 , 19992007.

    • Search Google Scholar
    • Export Citation
  • Shen, S. S., , T. M. Smith, , C. F. Ropelewski, , and R. E. Livezey, 1998: An optimal regional averaging method with error estimates and a test using tropical Pacific SST data. J. Climate, 11 , 23402350.

    • Search Google Scholar
    • Export Citation
  • Shepard, D. S., 1984: Computer mapping: The SYMAP interpolation algorithm. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, Eds., D. Reidel Publishing, 133–145.

    • Search Google Scholar
    • Export Citation
  • SMI, Eds.,. . 1996: Bereinigte Zeitreihen. Die Ergebnisse des Projektes KLIMA90. Band 2: Methoden. Tech. Rep. 2.2, 127 pp. [Available from MeteoSwiss, Krähbühlstrasse 58, CH-8044 Zürich, Switzerland.].

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , R. E. Livezey, , and D. C. Stokes, 1996:: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9 , 14031420.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. E. Livezey, , and S. S. Shen, 1998: An improved method for analyzing sparse and irregularly distributed SST data on a regular grid: The tropical Pacific Ocean. J. Climate, 11 , 17171729.

    • Search Google Scholar
    • Export Citation
  • Stefanicki, G., , P. Talkner, , and R. O. Weber, 1998: Frequency changes of weather types in the Alpine region since 1945. Theor. Appl. Climatol, 60 , 4761.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., 1995: Spatial patterns: EOFs and CCA. Analysis of Climate Variability, H. von Storch and A. Navarra, Eds., Springer, 227–257.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 513 pp.

  • Widmann, M. L., 1996: Mesoscale variability and long-term trends of Alpine precipitation and their relation to the synoptic-scale flow. Ph.D. dissertation, (Dissertation No. 11769), Swiss Federal Institute of Technology (ETH), 185 pp.

    • Search Google Scholar
    • Export Citation
  • Widmann, M. L., , and C. Schär, 1997: A principal component and long-term trend analysis of daily precipitation in Switzerland. Int. J. Climatol, 17 , 13331356.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., , C. M. Rowe, , and W. D. Philpot, 1985: Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring. Amer. Cartogr, 12 , 516.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , B. Rudolf, , U. Schneider, , and P. A. Arkin, 1996: Gauge-based monthly analysis of global land precipitation from 1971 to 1994. J. Geophys. Res, 101 , 19 02319 034.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 105 105 5
PDF Downloads 25 25 1

Reconstruction of Mesoscale Precipitation Fields from Sparse Observations in Complex Terrain

View More View Less
  • 1 Climate Research, ETH, Zürich, Switzerland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The feasibility of a statistical reconstruction of mesoscale precipitation fields over complex topography from a sparse rain gauge network is examined. Reconstructions of gridded monthly precipitation for the European Alps (resolution 25 km, 1202 grid points) are derived from rain gauge samples (70–200-km interstation distance, 25–150 stations). The statistical model is calibrated over a 15-yr period, and the reconstructed fields are evaluated for the remaining 5 yr of the period 1971–90. The experiments are used to define the statistical setup, to assess the data requirements, and to describe the error statistics of a centennial reconstruction to be used in a forthcoming study. Reduced-space optimal interpolation is employed as the reconstruction method, involving data reduction by empirical orthogonal functions (EOFs) and least squares optimal estimation of EOF coefficients. Also, a procedure to define covariance-guided station samples with a “representative” spatial distribution for the reconstruction is proposed.

Using a covariance-guided reference sample of 53 stations, the reconstruction accounts for 77% of the total variance. For individual grid points the relative reconstruction error (error variance divided by data variance) varies between 10% and 40%; this value drops to 2%–10% when considering subdomain means of 100 × 100 km2. The mesoscale patterns of the fields and multiyear precipitation anomalies are accurately reproduced. The EOF truncation is identified as the major limitation of the reconstruction skill but is necessary to avoid overfitting. Reconstructions from covariance-guided representative samples exhibit superior skill in comparison with those from randomly distributed stations. The skill of the reconstruction was found to depend marginally on the choice of the calibration period within the 20 yr, even when months with exclusively positive or negative values of the North Atlantic oscillation index were selected for calibration. This result indicates that the reconstruction model provides appreciable temporal stationarity.

Corresponding author address: Jürg Schmidli, Climate Research, ETH, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. Email: schmidli@geo.umnw.ethz.ch

Abstract

The feasibility of a statistical reconstruction of mesoscale precipitation fields over complex topography from a sparse rain gauge network is examined. Reconstructions of gridded monthly precipitation for the European Alps (resolution 25 km, 1202 grid points) are derived from rain gauge samples (70–200-km interstation distance, 25–150 stations). The statistical model is calibrated over a 15-yr period, and the reconstructed fields are evaluated for the remaining 5 yr of the period 1971–90. The experiments are used to define the statistical setup, to assess the data requirements, and to describe the error statistics of a centennial reconstruction to be used in a forthcoming study. Reduced-space optimal interpolation is employed as the reconstruction method, involving data reduction by empirical orthogonal functions (EOFs) and least squares optimal estimation of EOF coefficients. Also, a procedure to define covariance-guided station samples with a “representative” spatial distribution for the reconstruction is proposed.

Using a covariance-guided reference sample of 53 stations, the reconstruction accounts for 77% of the total variance. For individual grid points the relative reconstruction error (error variance divided by data variance) varies between 10% and 40%; this value drops to 2%–10% when considering subdomain means of 100 × 100 km2. The mesoscale patterns of the fields and multiyear precipitation anomalies are accurately reproduced. The EOF truncation is identified as the major limitation of the reconstruction skill but is necessary to avoid overfitting. Reconstructions from covariance-guided representative samples exhibit superior skill in comparison with those from randomly distributed stations. The skill of the reconstruction was found to depend marginally on the choice of the calibration period within the 20 yr, even when months with exclusively positive or negative values of the North Atlantic oscillation index were selected for calibration. This result indicates that the reconstruction model provides appreciable temporal stationarity.

Corresponding author address: Jürg Schmidli, Climate Research, ETH, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. Email: schmidli@geo.umnw.ethz.ch

Save